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Introduction
James F. Blinn

Microsoft Research

Several years ago, Jim Kajiya loaned me a copy of a book called Diagram Techniques in Group Theory [G.
E. Stedman, Cambridge England, Cambridge University Press, 1990]. This book described a graphical
representation called a Tensor Diagram for the algebra used to solve various problems in mathematical
physics. I was only able to understand the first chapter of the book, but even that was enough to excite me
tremendously about adapting the technique to the algebra of homogeneous geometry that we are familiar
with in computer graphics. Recently I have been playing more and more with these diagrammatic ways of
doing algebra and have come up with a lot of interesting results. This Siggraph course and the
accompanying course notes will present what I have figured out so far. Most of the geometric/algebraic
problems I will apply this to are pretty well known, but some aren’t and may even be new. I have been
excited by how easily and prettily tensor diagrams can express the algebraic form of various geometric
problems. And I hope to share that excitement with you.

This document represents a work in progress. Some sections are a bit rough and incomplete both in
exposition and in results. I am still playing around with these tools and will probably have some new
results by the time the course itself is presented. I have attempted to pick all the “low hanging fruit” of this
representation, but there are still some problems that I haven’t nailed down that I have a nagging feeling
have pretty simple solutions. I hope to have figured out some of the answers in the time between sending
these notes to Siggraph and the actual presentation at the conference. Maybe you, the reader, will find
those that I’ve missed. For updates to the notes, both from myself and any feedback from others, be sure to
consult my web site at:

http://www.research.microsoft.com/~blinn

Sometimes an application of TD will require a new way of looking at an old problem. To set this up, there
will sometimes be long stretches of discussion that do not immediately mention TD’s. The final punch line
should make this worthwhile.

Tensor diagrams show up in various guises in various fields. They are simply a way to represent
generalizations of matrix and vector products. So anything that uses matrices and vectors can possibly
benefit from the tensor diagram notion.

Some of these notes contain text cannibalized from several of my Jim Blinn’s Corner articles in the IEEE
Computer Graphics and Applications journal. I will identify these in the chapter introductions. Since each
of these articles is meant to be relatively self contained, the beginning of the articles typically contains a
review of relevant previous results. I have left several of these reviews intact so some chapters in these
notes may seem a bit repetitious. My intention in doing this is that the alternative explanations may help
readers new to the subject by showing the material in more than one way. The notes also have a lot of
intentional redundancy. I often solve the same problem in several ways and the notes will present all of
them. The notes are thus an archive of alternative ideas about the problems. This might help gain more
insight into the machinery. Finally, some of the notes come from my original worksheets used in
investigating the problems. I use a mathematical typesetting program and lots of cut-and-paste and drag-
and-drop to do algebra. The resulting derivations are often painfully explicit and verbose. I’ve often left
these in intact but you can skip quickly over them.

Also, I will format the notes in a manner that I have always wanted in books I have read. I typically like to
use diagrams as parts of speech. These will be inserted in the text where they are mentioned instead of
referring to “figure xyz” that might be several pages away. I will also take advantage of one of the benefits
of electronic publication in that there is no page limit, so I will repeat equations and figures wherever they
might be re-used instead of, again, referring to equation numbers or figure numbers that may be an even
larger number of pages away.
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Finally, not all problems may be well served by tensor diagrams. I will also attempt to address the
limitations of this technique

How Mathematics Works
In case anybody hasn’t told you yet, I’d like to clue you in on how mathematics works. First you find a
problem that you want to solve. After some study you find that solving that problem will require some
preliminary tools and derivations. Working on those you find that they too require some precursors. You
keep working backwards from the problem until you get to something you know and can prove. That is,
you work backwards from the problem to the solution.

Now how do you present your results? You start with the simple constructions and work forwards. That is
you start with something obvious and well known. Then you take off in a slightly new direction. Each
derivation and new definition is not a great conceptual leap so your audience should be able to follow you
easily. However, for someone seeing this for the first time many of the new definitions and derivations
seem unmotivated.

Guess what? I’m going to do that too, but not completely. I will start out here by showing the general
problem that I am interested in, to see where we ultimately are going. Then I will go back and start from
scratch. I will, in fact, do this twice. The first time is a quick run through of the basic ideas. The second
time I will go back and fill in some details. Along the way we will find some new ways of looking at
various intermediate problems.

For example, in playing around with cubic polynomials I found out that I didn’t understand quadratic
polynomials as well as I thought. So I had to go back and perform the same operations on quadratics,
which seemed trivial at first, but taught me something when I went back to cubics.

The Universe
There are two basic geometrical universes that I will discuss here: Euclidean geometry and Projective
geometry. The primary difference between them is the allowable transformations that can be performed on
geometric figures that will “make no difference” to their geometrical relationships. For Euclidean
geometry the allowable transformations will be pure rotations and translations. For Projective geometry the
allowable transformations will be a general perspective projection. In each case we will be interested in
properties of a shape that remain the same (are invariant) when subjected to the transformation. These
properties include:

Projective Intersections

Tangency

Cross Ratios

Euclidean All the above plus:

Distance

Angle

Parallelism

Most of the algebraic tools we will develop will be useful in both situations.

The other axis of concern is dimensionality. I will discuss only 1, 2 and 3-dimensional versions of these
three geometries. Higher dimensions are interesting too, but I won’t go into them explicitly here. I will
refer to the various situations using the following naming convention. The basic representation of a point
in each of the geometries is as a vector. For homogeneous geometry we use an extra homogeneous
coordinate. So we will have:
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Euclidean Projective

1D: [ ]X 1DH: [ ]x w

2D: [ ]X Y 2DH: [ ]x y w

3D: [ ]X Y Z 3DH: [ ]x y z w

Note that, purely algebraically, a 2D Euclidean point will have much in common with a 1DH Projective
point and most of the manipulation machinery for 2D Euclidean points will be the same as that for 1DH
Projective points. The same goes for (3D Euclidean and 2DH Projective) and (4D Euclidean and 3DH
Projective). Where appropriate, then, I will label sections in the notes deal with one particular
dimensionality as either 2D(1DH), or 3D(2DH), or 4D(3DH).

The Problem
Now for the basic motivating problem: I want to understand cubic curves. In 2DH space, these are curves
consisting of all points that satisfy the homogeneous equation

3 2 2 3

2 2

2 2

3

3 3

3 6 3

3 3

0

Ax Bx y Cxy Dy

Ex w Fxyw Gy w

Hxw Jyw

Kw

+ + +
+ + +

+ +
+ =

Given various choices for the coefficients A through K this curve can have various shapes. A selection of
possible shapes appears below;

1

So, what sort of geometric questions do we want to ask? First off, given A…K which of the general shape
categories above (as well as a few others) does the curve have? Next, note that a cubic curve can have up
to three inflection points (marked by tick marks on the curves above). Note also that, if there are three,
they are collinear. So, given A…K, how many inflection points are there, where are they, what is the
equation of the line through them? The complexity of these questions is hinted at by examining the final
diagram. It is different from the other three in that its algebraic equation can be factored into the product of
a linear form and a quadratic form. Given A…K how can we tell if the cubic equation if factorable? We
can get a hint by going down a degree and ask the same question about quadratic curves. These satisfy the
equation

2 2

2

2

2 2

0

Ax Bxy Cy

Dxw Eyw

Fw

+ +
+ +

+ =

This expression can generate all conic sections and, when the equation is factorable, it can generate a pair
of intersecting lines:
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We will show that the algebraic test for whether this is true is to evaluate the determinant of a matrix. If this
determinant is zero, the quadratic is factorable.

2 2 2det 2 0

A B D

B C E ACF BED D C E A B F

D E F

 
  = + − − − = 
  

An equivalent expression for the cubic curve case is considerably more complicated. G. Solomon [A
treatise on the higher plane curves, 1879] describes the, so-called, cubic discriminant as a polynomial that
is degree 12 in the coefficients A…F and that has over 10,000 terms. Manipulating this thing explicitly is
inconvenient at best. The main interest in studying tensor diagrams is because they can enable us to write
and manipulate such geometric tests more easily. (I haven’t gotten this particular one figured yet though)

The Matrix of knowledge
In wending ourselves through the various derivations here I will be constantly going back and forth
between algebra (what is the geometric interpretation of this equation) and geometry (what is the equation
that indicates this?)

In addition it is useful to visualize the various topics as a matrix with dimensionality along one axis and
polynomial degree along another. We can traverse this matrix in various orders. Pure row order or pure
column order is usually not the best route though. Sometimes a derivation within one of the cells will
naturally lead us to generalizations across degree (up and down a column) and sometimes across
dimensions (left and right across a row.)

1DH 2DH 3DH

linear Linear
polynomial

Line in a
plane

Line in
space

quadratic Quadratic
polynomial

Quadratic
curve

Quadratic
surface

Pairs of
quadratics

Resultants Resultant Resultant

Cubics Polynomial Curve Surface

Pairs of
cubics

Resultants Resultants Resultants

Quartic Polynomial Curve Surface

What does it all mean
When the only tool you have is a hammer, you tend to see each problem as a nail. It is tempting, when
investigating some new tool or technique to try to apply it to any and all situations that come along. I will
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try to avoid that here and, in the summary, try to probe the limitations of our tool and try to identify
situations in which it is not useful.

The algebra represented by a tensor diagram can be written in conventional notation for many of the
simpler applications, and it might seem like diagrams are not that remarkable an advance. But in more
complex applications, when the diagram contains loops, the conversion to standard linear vector expression
is not easy. That’s where tensor diagrams shine.
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Homogeneous Geometry
This chapter is cannibalized from

Uppers and Downers, Part 1
which is chapter 9 of Jim Blinn’s Corner: Dirty Pixels

Mathematical research is largely a process of successive generalization. Generalizing the square root
operation to negative values leads to complex number theory. Generalizing Euclidean transformations to
perspective transformations leads to projective geometry and homogeneous coordinates. Often stuff we use
in day-to-day calculations is just a special case of some more general theory that we aren't even aware of.
In fact, sometimes this can lead to confusion—an example of “too little knowledge is a dangerous thing”.
This is the case for the standard vector/matrix formulation used to solve geometric problems in
homogeneous coordinates. But once you see the generalization what was a problem before now becomes a
thing of beauty. So, this time I'm going to discuss what's really going on with homogeneous coordinates.

This chapter starts with a review of the standard vector/matrix notation for homogeneous geometry and
then does an expose of its deficiencies. In the next chapter I'll introduce a better notation (Einstein Index
Notation) and show how it solves some complex problems easily. Finally, the rest of the document
describes Tensor Diagrams, a representation of EIN based on graph theory.

First, some ground rules. We're dealing with pure projective geometry and homogeneous coordinates here.
That means that such concepts as distance, angle measurement and parallelism are meaningless. We are
only interested in the things that remain constant after a perspective transformation: intersections, tangency
etc. Also, any nonzero scalar multiple of any of our entities still represents the same entity. Sometimes I
will discard troublesome scales without much comment.

Naming Conventions
Since this is all about notation, let's review some typical conventions for naming things to give you a taste
of the things we are trying to unify.

We'll start with the distinction between scalars, vectors and matrices. For the time being I will write scalars,
vector components and matrix elements using italic letters; a, pi , Tij . I'll use roman letters for vectors: P.

Different vectors of the same type will sometimes be distinguished with subscripts: P1, P2. I'll use bold face
letters for matrices: T. We see right away that there is some potential for confusion with the meaning of
subscripts; they can either identify vector elements or they can name different vectors. This is one of the
things we want to avoid when we get to our improved technique.

Often we will need to represent vectors or matrices that are simple modifications of other vectors or
matrices. I'll represent these by using the letter of the original with some diacritical mark appended. (The
definitions of some of these operations are given below.) A transformed version of a vector P is ′P . The
adjoint of matrix M is written M* . The transpose of matrix M is MT. The dual of matrix M is

~
M .

3D(2DH) Review
First, let's go through the standard litany of homogeneous representation in two dimensions. We represent
two-dimensional homogeneous entities (2DH) in three dimensional space.

Points and Lines
Points are three element row vectors

P = x y w
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Lines are three element column vectors

L =
L

N
MMM

O

Q
PPP

a

b

c

The matrix (or dot) product of the row and column vector is a scalar:

P L⋅ = + +ax by cw

If the value is zero, the point lies on the line.

Transformations
We transform points by multiplying on the right by a 3×3 matrix

′ =P P T

Transform lines by multiplying on the left by the adjoint of the matrix we used to transform points

′ =L LT*

The adjoint is the transpose of the matrix of cofactors of the original matrix. An example element of the
adjoint of T is

T*d i
23 21 13 11 23= −T T T T

The adjoint is the same as the inverse except for a scale factor. But we don't care about scale factors, so the
adjoint and inverse are all the same to us.

Intersections
To find the line containing two given points, take their 3D cross product and write the result as a column
vector.

P P1 2× = × =
−
−
−

L

N
MMM

O

Q
PPP

x y z x y z

y w y w

w x w x

x y x y
1 1 1 2 2 2

1 2 2 1

1 2 2 1

1 2 2 1

To find the intersection of two lines, take their 3D cross product and write the result as a row vector.

L L1 2× =
L

N
MMM

O

Q
PPP

×
L

N
MMM

O

Q
PPP

= − − −
a

b

c

a

b

c

b c b c c a c a a b a b
1

1

1

2

2

2

1 2 2 1 1 2 2 1 1 2 2 1
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Quadrics
A second order algebraic equation such as

Ax Bxy Cxw Dy Eyw Fw2 2 22 2 2 0+ + + + + =

represents an arbitrary conic section (also called a quadric curve). This equation can be written in matrix
form as

x y w

A B C

B D E

C D F

x

y

w

x y w

x

y

w

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

=Q 0

that is, a point P is on the conic if

P PTQ = 0

Note that the matrix Q is symmetric.

There is a variant of Q that is good for testing line tangency. We'll call this the “dual” of Q and write it as
~
Q . It so happens that the dual of Q is equal to the adjoint of Q. A line L is tangent to the conic if

L LT ~
Q = 0

Note that we had to put in a few transposes in the above two equations to make the row and column
conformability rules of matrix multiplication work out.

Starting from an arbitrary point, we can draw two lines tangent to a given quadric. Connecting these two
points of tangency gives a line called the “polar line”. The vector for this line is just the product of the
quadric matrix and the point vector.

P LTQ =

P

Q

PQ=Lt

What you get out, according to the rules of matrix multiplication, is a row vector. You have to transpose it
to get the line into the column vector notation.

To transform a conic section, we transform the Q matrix by

′ =Q T Q T* *d iT

that is, by pre- and post-multiplying by the adjoint of the point transformation matrix T. To transform the
dual of Q we must multiply by the point transformation matrix
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Q T Q T* *d i d i′
= T

Oops
Now wait a minute. There's something fishy here. I've been preaching all along that points are row vectors
and lines are column vectors. But the above equations have points showing up sometimes as columns and
lines showing up sometimes as rows. It gets even worse when we go to three dimensions.

4D(3DH) Review
Now, let’s generalize this to 3D homogeneous.

The Obvious Part
All the 2DH stuff generalizes pretty easily to three dimensions: just make the vectors four elements long
and making the matrices 4×4. You then have to reinterpret the geometric meaning of things a bit. What was
a line in 2DH (column vector) is now a plane in 3DH. I will typically use the letter E for 3DH planes.

E =

L

N

MMMM

O

Q

PPPP

a

b

c

d

What was a conic section in 2DH (symmetric matrix) is a family of 3DH surfaces consisting of ellipsoids,
cones, cylinders, saddle points, and the like. Tangency of lines with a conic section becomes tangency of
planes against the above surfaces.

The only slightly tricky part in going to 3DH involves the four dimensional generalization of the cross
product. Geometrically this is the problem of finding a plane passing through three points. Now we can
write the three dimensional cross product of P1 and P2 as

P P1 2× =
L

N
MMM

O

Q
PPP

a

b

c

where

a
y w

y w
= L
NM

O
QPdet 1 1

2 2
, b

w x

w x
= L
NM

O
QPdet 1 1

2 2
, c

x y

x y
= L
NM

O
QPdet 1 1

2 2

By analogy the four dimensional cross product of P1, P2 , and P3, is a column vector with an a component
of

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

det , det

y z w x z w

a y z w b x z w

y z w x z w

   
   = = −   
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1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

det , det

y y w x y z

c y y w d x y z

y y w x y z

   
   = = −   
      

A symmetric formulation finds the coordinates of a point common to three planes.

Lines
Again, less well known is a homogeneous formulation for lines in three dimensions. I discuss this in more
detail in the next chapter. Here are the highlights.

We represent a 3DH line as an anti-symmetric 4×4 matrix. Giving the six unique elements of the matrix the
names p, q, r, s, t, u we can write the matrix as

L =

−
− −

−
− −

L

N

MMMM

O

Q

PPPP

0

0

0

0

p q r

p s t

q s u

r t u

Given two points P1 and P2 , you can calculate the values of p, q, r, s, t, u for the line connecting them by

p
z w

z w
= L
NM

O
QPdet 1 1

2 2
, q

y w

y w
= L
NM

O
QPdet 1 1

2 2
, r

y z

y z
= L
NM
O
QPdet 1 1

2 2

s
x w

x w
= L
NM

O
QPdet 1 1

2 2
, t

x z

x z
= L
NM

O
QPdet 1 1

2 2
, u

x y

x y
= L
NM

O
QPdet 1 1

2 2

Given two planes E1 and E2 , you can calculate p, q, r, s, t, u for the intersection line by using a similar set
of expressions.

It turns out that these calculations will always generate a singular matrix for L. Blindly calculating the

determinant of the matrix, though, gives the value pu qt sr− +a f2 . This means that the components of the
line matrix will always satisfy the constraint

pu qt sr− + = 0

A given point x y z w lies on the line L if their vector/matrix product gives four zeros

x y z w L = 0 0 0 0

If the point is not on the line, the two of them together determine a plane in space. The four numbers you
get out of the product will be the components of the plane.

x y z w a b c dL =

You just have to transpose the result to get it to be a column vector.

There is also a different form of the line matrix that is good for intersections with planes. We'll call this
~
L .

This consists of the same six values as L but arranged differently
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~
L =

− − −
− −

−

L

N

MMMM

O

Q

PPPP

0

0

0

0

u t s

u r q

t r p

s q p

A given plane includes the line L if the vector/matrix product with the
~
L form gives four zeros. If it

doesn’t, the four values give the point of intersection of the line and plane.

~
L

a

b

c

d

x

y

z

w

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

Again you must rewrite the result as a row vector.

It so happens that
~
L is almost the adjoint of L. In fact, if you go through the adjoint calculation machinery

you find that

L L* ( )
~

= − +pu qt sr

If it weren't for the embarrassing fact that pu qt sr− + = 0 we'd be in business. As it is, we find the dual by
just rearranging the elements. I will show a better way below.

You transform a line matrix by

′ =L T L T* *d iT

You transform its dual form by

~ ~
′ =L T LTT

YIKES!
So what's going on here? Our whole concept of row and column vectors distinguishing between points and
planes is crumbling! And well it should. It turns out that the somewhat pictorial matrix representation of all
these geometric entities is simply not powerful enough to express all the things that can happen.
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A Homogeneous Formulation
For Lines In 3 Space

This chapter is cannibalized from my 1977 Siggraph paper in
Computer Graphics (Proc. Siggraph), Vol. 11, No. 2, 1977, page 237

It repeats some of the previous chapter and then goes into more detail about 3D lines

Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient
representation for various geometric quantities in two and three dimensions. The representation of lines in
three dimensions has, however, never been fully described. This paper presents a homogeneous formulation
for lines in 3 dimensions as an anti-symmetric 4×4 matrix which transforms as a tensor. This tensor
actually exists in both covariant and contravariant forms, both of which are useful in different situations.
The derivation of these forms and their use in solving various geometric problems is described.

Introduction
We will assume the reader is somewhat familiar with the homogeneous representation of points and planes
in 3-space. A good introduction may be found in [1]. Briefly, a point is represented as a four-component
vector, usually written as

x y z w

Any non-zero multiple of this row vector represents the same point. The “real” components of the point
may be discovered by dividing by the fourth component to obtain the three components:

x w y w z w

A plane is represented as a four-component column vector:
a

b

c

d

L

N

MMMM

O

Q

PPPP
Any non-zero multiple of this column vector represents the same plane. The first three components
describe a vector normal to the plane and the fourth is related to its distance from the origin.

The dot product of a point (row) vector and a plane (column) vector is proportional to the distance from the
point to the plane.

x y z w

a

b

c

d

ax by cz dw D

L

N

MMMM

O

Q

PPPP
= + + + ∝

A special case of this is the fact that, if the dot product is zero, the point lies in the plane. If the dot product
is non-zero, we can find the actual distance by the following means. Construct a three dimensional vector
of unit length perpendicular to the plane.

A B C a b c a b c= + +/ 2 2 2

Scale it up by D and add it to the position of the point. We should then have a point on the plane.

X Y Z
x

w
DA

y

w
DB

z

w
DC= + + +L

NM
O
QP
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Since this point is on the plane, its dot product with the plane vector will be zero. We now have an equation
that can be solved for D.

0 1=

L

N

MMMM

O

Q

PPPP
= + + +

L

N

MMMM

O

Q

PPPP
X Y Z

a

b

c

d

x DAw y DBw z DCw w

a

b

c

d

D
ax by cz dw

w a b c
= − + + +

+ +2 2 2

The sign of D indicates which side of the plane the point was on. It can be ignored if only the distance is
required.

An object defined in terms of homogeneous points may be transformed by multiplication of its points by a
4x4 matrix.

x y z w x y z wT = ' ' ' '

Any combination of scaling, translation, rotation, and perspective distortion may be represented by the
matrix T. To determine the coordinates of a plane after it has undergone the same transformation we must
pre-multiply by the inverse of T.

T−

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
1

a

b

c

d

a

b

c

d

'

'

'

'

Thus the dot product of the transformed point and plane is the same as the dot product of the original point
and plane. The relationship of a point lying on a plane is preserved.

Suppose we are given three points and we wish to determine the components of the plane vector through
them. That is, we wish to solve for a, b, c, and d in the equation:

x y z w

x y z w

x y z w

a

b

c

d

1 1 1 1

2 2 2 2

3 3 3 3

0

0

0

L

N
MMM

O

Q
PPP

L

N

MMMM

O

Q

PPPP
=
L

N
MMM

O

Q
PPP

Consider a fourth point not in the plane of the other three. Its dot product with the desired plane vector will
then be non-zero. We will call it q. The resulting equation is then:

x y z w

x y z w

x y z w

x y z w

a

b

c

d

a

b

c

d q

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

0

0

0

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
M

This equation may be solved by multiplying both sides by the adjoint of M. The adjoint is the transpose of
the matrix formed from the cofactors of the original matrix. The cofactor of an element of a matrix is found
by erasing the row and column containing the element and computing the determinant of the remaining
smaller matrix, finally flipping the sign if the sum of the row and column indices of the element is odd.
Thus the cofactor of the x4 term of M is:

cof x

y z w

y z w

y z w
4

1 1 1

2 2 2

3 3 3

b g = −
L

N
MMM

O

Q
PPP

det

The product of a matrix and its adjoint is the identity matrix times the determinant of the original matrix.
The product of the adjoint with the right side of the equation is just q times the right hand column. Our
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equation is now:

det

cof

cof

cof

cof

M

a

b

c

d

q

x

y

z

w

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

4

4

4

4

Now, since any non-zero multiple of a plane vector represents the same plane, we can neglect the q and
det M terms above. Finally, note that the cofactors do not contain any components of the arbitrarily chosen
fourth point. This whole process can be represented in a shorthand notation:

a

b

c

d

x y z w

x y z w

x y z w

L

N

MMMM

O

Q

PPPP
=

L

N

MMMMM

O

Q

PPPPP
det

i j k l

1 1 1 1

2 2 2 2

3 3 3 3

where

; ; ;i j k l=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

This is simply a generalization of the more familiar shorthand notation of the cross product of two vectors
in ordinary three-space. The only problem that could arise is if the matrix M were singular. This only
occurs if the three original points are collinear, whereupon there is no solution. In this case, the four
cofactors are all zero. We can take the appearance of four zeros when looking for a plane through three
points as an indication that the three points were collinear.

There is a similar mechanism for determining the point of intersection of three planes. That is, the
homogeneous coordinates of the point of intersection is:

x y z w

a a a

b b b

c c c

d d d

=

L

N

MMMMM

O

Q

PPPPP
det

1 2 3

1 2 3

1 2 3

1 2 3

i

j

k

l

where, here

; ; ;i j k l= = = =1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Again, the appearance of four zeros when solving for the point of intersection indicates that the three planes
do not have a single common point. They, in fact, intersect on a line.

The Homogeneous Line Representation
We shall now construct a homogeneous representation of lines in 3D taking the form of a 4x4 matrix we
shall call L. It will have the property that any scalar multiple of it represents the same line. In addition, if a
point vector is multiplied by L, a result of four zeros indicates that the point is on the line. The inspiration
for this formulation comes from the Grassmann coordinate systems described in [2].

First re-consider the problem of finding the plane trough three points. If the four cofactors in the solution
are all zero then the three points were collinear. We can re-interpret this as a condition upon a third point
that will make it collinear with two others. Thus for two given points P1 and P2 , a third point is collinear
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if:

det

i j k l

x y z w

x y z w

x y z w

1 1 1 1

2 2 2 2

0

0

0

0

L

N

MMMMM

O

Q

PPPPP
=

L

N

MMMM

O

Q

PPPP

That is, we must have

− L
NM

O
QP +

L
NM

O
QP −

L
NM

O
QP =

L
NM

O
QP −

L
NM

O
QP +

L
NM

O
QP =

− L
NM

O
QP +

L
NM

O
QP −

L
NM

O
QP =

L
NM

O
QP −

y
z w

z w
z

y w

y w
w

y z

y w

x
z w

z w
z

x w

x w
w

x z

x z

x
y w

y w
y

x w

x w
w

x y

x w

x
y z

y z
y

x

det det det

det det det

det det det

det det

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1

0

0

0

z

x z
z

x y

x y
1

2 2

1 1

2 2
0

L
NM

O
QP +

L
NM

O
QP =det

Now, defining the six new coordinates:

p
z w

z w
q

y w

y w
r

y z

y z

s
x w

x w
t

x z

x z
u

x y

x y

= L
NM

O
QP = L

NM
O
QP = L

NM
O
QP

= L
NM

O
QP = L

NM
O
QP = L

NM
O
QP

det ; det ; det

det ; det ; det

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

We can write the four equations in matrix form:

x y z w

p q r

p s t

q s u

r t u

0

0

0

0

0 0 0 0

−
− −

−
− −

L

N

MMMM

O

Q

PPPP
=

The above anti-symmetric matrix is then our desired line representation L. Any non-zero multiple of L will
still represent the same line. If a point is multiplied by L and four zeros result then the point is on the line.

Furthermore, if the point is not on the line, the four coordinates obtained will be the same values obtained if
all three points were solved for their common plane. That is, they will be the components of the plane
common to the point and the line:

x y z w a b c dL =

We need only to transpose the row vector to get the plane vector in its more familiar column format.

There is an analogous process for generating the matrix representing the line formed by intersecting two
planes. Given planes 1 and 2, the condition that a third plane contains their line of intersection is:

det

a a a

b b b

c c c

d d d

1 2

1 2

1 2

1 2

0 0 0 0

i

j

k

l

L

N

MMMMM

O

Q

PPPPP
=
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That is, the four equations must be satisfied:

b
c c

d d
c

b b

d d
d

b b

c c

a
c c

d d
c

a a

d d
d

a a

c c

a
b b

d d
b

a a

d d
d

a a

b b

a
b b

c c
b

a

det det det

det det det

det det det

det det

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1

0

0

0

L
NM

O
QP −
L
NM

O
QP +

L
NM
O
QP =

−
L
NM

O
QP +
L
NM

O
QP −

L
NM
O
QP =

L
NM

O
QP −

L
NM

O
QP +

L
NM
O
QP =

−
L
NM
O
QP +

a

c c
c

a a

b b
2

1 2

1 2

1 2

0
L
NM
O
QP −
L
NM
O
QP =det

These can be written in matrix form:

K

a

b

c

d

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

0

0

0

0

The matrix K is an anti-symmetric matrix that is a homogeneous representation of the line of intersection of
the two planes. Any non-zero multiple of K represents the same line. The product of K and any other
plane vector will yield four zeros if the line is contained in the plane. If the line is not contained in the
plane then the product will yield the homogeneous coordinates of the point of intersection of the line with
the plane:

K

a

b

c

d

x

y

z

w

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
We need only to transpose the point vector to get it in the more familiar row form. There is one somewhat
surprising fact, however. For a given line, the matrix L formed by two points on the line is not the same as
the matrix K formed by two planes intersecting on the line. We will now show this.

The Dual Line Representation
We first take note of another interpretation of the matrix L. Since each column yields a zero when
multiplied by a point on the line we can think of it as a plane containing the line. Similarly each row of K
can be thought of as a point on the line K. Thus L consists of four planes containing the line represented
by L and K consists of four points on the line represented by K. Let us take any three planes of L and
attempt to find the point common to them. Since we know that the planes intersect, not at a single point, but
at a line we expect to get four zeros.
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det

det det det det

0

0

0

0

0

0

0

0

0

0

0

0

0

p q

p s

q s

r t u

p s

q s

r t u

p q

q s

r t u

p q

p s

r t u

p q

p s

q s

pu qt sr

s

q

p

x

y

−
−

−
− −

L

N

MMMMM

O

Q

PPPPP
=

×
−

−
− −

L

N
MMM

O

Q
PPP

− × −
− −

L

N
MMM

O

Q
PPP

+ ×
−

−
− −

L

N
MMM

O

Q
PPP

− ×
−

−
−

L

N
MMM

O

Q
PPP

=

− +

−
−
−

L

N

MMMM

O

Q

PPPP
=

i

j

k

l

i j k l

a f
z

w

L

N

MMMM

O

Q

PPPP
In order to make x y z w= = = =0, as we know must be the case, we are forced to the conclusion that
either s q p= = = 0 or pu qt sr− + = 0. By a similar operation on other choices of columns of L we find
that the latter choice is correct. Thus, to reiterate, for any matrix L constructed from two point vectors to
represent the line connecting them, the six coordinates will always satisfy the relation:

pu qt sr− + = 0 (*)

Given this relation we can construct the following matrix product:

0

0

0

0

0

0

0

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

− − −
− −

−

L

N

MMMM

O

Q

PPPP

−
− −

−
− −

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

u t s

u r q

t r p

s q p

p q r

p s t

q s u

r t u

The middle matrix is just L. The product is all zeros either identically or by virtue of relation (*). How can
we interpret the left-hand matrix? Since each row multiplied by L yields four zeros each row must be a
point on the line. The left-hand matrix must be the same as K, that is, four points on the line stacked into a
4×4 matrix. The matrix K thus contains the same numbers as the matrix L; they are just arranged
differently. We can now match the names of the coordinates with their values if calculated as the
intersection of two planes:

u
c c

d d
t

b b

d d
s

b b

c c

p
a a

b b
q

a a

c c
r

a a

d d

= − LNM
O
QP = L

NM
O
QP = − LNM

O
QP

= − LNM
O
QP = L

NM
O
QP = − LNM

O
QP

det ; det ; det

det ; det ; det

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

Thus the homogeneous representation of a line exists in two dual forms generated by joining two points and
by intersecting two planes. The six coordinate points generated in each case satisfy equation (*).

Distance Measurements
To further increase intuitive feel for the meaning of these six coordinates let us see where a given line
intersects the plane at infinity. We multiply the K form of the line with the plane at infinity and get:
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0

0

0

0

0

0

0

1 0

− − −
− −

−

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
=

−
−
−

L

N

MMMM

O

Q

PPPP

u t s

u r q

t r p

s q p

s

q

p

The intersection is the point at infinity − − −s q p 0 . That means that the 3D vector s q p points
parallel to the line. Now let us determine the plane containing the line and the origin. We multiply the L
form of the line with the origin and get:

0 0 0 1 0L = − −r t u

This means that the 3D vector − −r t u points perpendicular to this plane. The dot product of these two

vectors is zero; this is just relation (*). Thus s q p lies in the plane containing the line and the origin.
If we compute the cross product of the two vectors we will get a third vector which is perpendicular to the
line and pointing directly toward it.

tp uq rp us rq st+ − − − =T

By making use of (*) it can be shown that the length of T is

T = + + + +r t u s q p2 2 2 2 2 2d id i
We can now compute the perpendicular distance, D, from the origin to the line. Place the normalized T at
the origin and scale it up by the factor D. We should now be at the point on the line that is closest to the
origin.

D
tp uq

D
rp us

D
rq st+ − − −L

NM
O
QP

=
a f a f a f

T T T
L1 0 0 0 0

Multiplying out and solving for D we get:

D
r t u

s q p
= + +

+ +

2 2 2

2 2 2

This is the perpendicular distance from the origin to the line L.

Transforming Lines
A homogeneous point is transformed by post-multiplying by a 4x4 matrix. A homogeneous plane is
transformed by pre-multiplying by the inverse of the point transformation matrix. We shall now derive the
process whereby a homogeneous line is transformed. This procedure should preserve dot products just as
the plane transformation does. That is, given the relationship:

x y z w a b c dL =

We wish the transformed quantities to also satisfy the relationship:

′ ′ ′ ′ ′ = ′ ′ ′ ′x y z w a b c dL

We can express the primed point and plane in terms of the unprimed by

x y z w x y z w

a b c d a b c d
t

T

T

= ′ ′ ′ ′

= ′ ′ ′ ′−1d i
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Combining these

x y z w a b c d

x y z w a b c d

t

t

T L T

T L T

′ =

′ =

−1d i

Comparing this with the original point, line, plane relation we can state that a solution is:
L T L T= ′ t

or

T L T L− − = ′1 1d it

Matrices that represent quantities that transform in this way are called tensors. In addition, since the
transformation matrix used is the inverse of the point transformation matrix, it is a contra-variant tensor.

By applying the analogous process to the K form of the line we get

T K T Kt = ′

This is another tensor. This time the transformation matrix is the same as the point transformation matrix so
it is a covariant tensor.

Intersecting Lines
We have so far examined the problem of whether a point is on a line and whether a line is in a plane. There
remains the question of whether two lines intersect, and, if so, where. We can solve this by taking the point
form of one line and multiplying it by the plane form of the other.

K L N1 2 =

Each row of K1 , being a point of line 1, will generate a plane through that point and through line 2. If the
two lines intersect, each of these will be the same plane: the plane containing the two lines. Likewise each
column of L2 , being a plane containing line 2, will generate a point at the intersection of that plane and line
1. If the two lines intersect, each of these will be the same point, the point of intersection of the lines. Thus
each row of N is a plane vector for the plane common to the lines. Each column of N is a point vector for
the intersection of the lines. N is the outer product of the point and the plane:

N =

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

x

y

z

w

a b c d

ax bx cx dx

ay by cy dy

az bz cz dz

aw bw cw dw

Since the point of intersection always lies in the plane of intersection the inner product will be zero. This
can be calculated as the trace of N. In terms of the components of K1 and L2 the trace of N has the value

trace N = − + + − +p u q t s r p u q t s r1 2 1 2 1 2 2 1 2 1 2 1

Note the similarity to relation (*).

For lines that do not intersect (skew lines) the trace of N will be proportional to the perpendicular distance
between them. This can be seen in the following manner. First consider the cross product of the direction
vectors of the two lines.

s q p s p q s p q1 1 1 2 2 2 3 3 3× =

This vector will be perpendicular to both lines. A plane having s q p3 3 3 as its a b c components
will be parallel to both line 1 and line 2. We can find the particular such plane which contains line 1 by
solving for d1 in
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K1

3

3

3

1

0

0

0

0

s

q

p

d

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
This yields four equations all of which can be shown to have the common solution

d p u q t s r1 1 2 1 2 1 2= − + −

Similarly, the plane parallel to line 1 that contains line 2 has

d p u q t s r2 2 1 2 1 2 1= − +

The perpendicular distance of each of these planes to the origin is

D
d

s q p
D

d

s q p
1

1

3
2

3
2

3
2 2

2

3
2

3
2

3
2

=
+ +

=
+ +

;

The perpendicular distance between the two planes and the perpendicular distance between the lines is

D D
d d

s q p s q p
2 1

2 1

3
2

3
2

3
2

3
2

3
2

3
2

− = −

+ +
=

+ +

trace N

If the trace is zero, the lines intersect. If the trace is non-zero, the perpendicular distance is as shown.

What, then, are the six homogeneous coordinates for the line along which this distance is measured? We
already have the direction of the line as s q p3 3 3 . It remains to find r3 , t3 , and u3 . This can be
accomplished by using the three facts that line 3 intersects line 1, line 3 intersects line 2, and the
coordinates of line 3 must satisfy relation (*).

trace

trace

K L

K L
3 2

1 3

3 3 3 3 3 3

0

0

0

=
=

− + =p u q t s r

These three equations may then be solved for r3 , t3 , and u3 .

Conclusion
The line representation developed here can be used to solve many geometric problems in three dimensions.
Its form, however, does lead to much redundant calculation for many problems of interest. Its main use
may therefore be as a conceptual tool to generate formulas for desired geometrical quantities that are then
simplified based on other knowledge of the problem.
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Einstein Index Notation
This chapter is cannibalized from

Uppers and Downers, Part 1
which is chapter 9 of Jim Blinn’s Corner: Dirty Pixels

Tenser said the tensor.
Tenser said the tensor.
Tension, apprehension,
and dissension have begun.
—Alfred Bester, The Demolished Man

The Situation
In order to represent homogeneous geometry correctly, we have to borrow some notation from the world of
tensor analysis. It turns out that physicists have been faced with this sort of thing for some time. They are
concerned with somewhat different problems than we are here but their notation is readily adaptable. Let's
build up to this gradually.

We recognize that there are two kinds of things: point-like and plane-like. Rather than cloud our minds
with such concepts as rows and columns, we'd like to identify which kind of vector something is by some
other sort of notational mechanism. The physicist’s solution, translated into our terms, is to write the point-
like things with superscript indices (the uppers of the title) and plane-like things with subscript indices (the
downers). The point-like indices are called contravariant and plane-like ones are called covariant.

Putting the two different types of indices in two different locations keeps them distinguishable but also
create an ambiguity: superscripts used to mean exponentiation, now they are contravariant coordinate
indices. Subscripts used to be available to construct different names, now they are covariant coordinate
indices, and we have to use entirely different letters for different names. This ambiguity is another example
of a growing problem with mathematical notation:

There aren't enough squiggles to go around

Anyway, we can now write our point as

P P P P P= 1 2 3 4

and a 3DH plane as

E E E E E= 1 2 3 4

Matrices have two indices. Each one can be either covariant or contravariant. This makes for three
possibilities: pure covariant (Mij ), pure contravariant (Mij ), and what are called “mixed” (Mj

i ). It was the

inability to distinguish between these that has been causing all our troubles.

One further note: The different type styles we previously needed to distinguish between scalars, vectors and
matrices are no longer necessary. Since we can now easily determine the species of creature by how many
indices it has, I'll just use italic letters when indices are used. Anything with one index is a vector; anything
with two indices is a matrix. In fact, we can now have triply indexed critters (cubical matrices?) or
quadruply indexed critters. These actually have practical use, as we will see below.
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The Multiplication Machine
We will now represent vector and matrix multiplication in a different way. Remember, in the old style, the
laws of matrix multiplication are just a shorthand notation for

x y z w

a

b

c

d

ax by cz dw

L

N

MMMM

O

Q

PPPP
= + + +

Now, instead of using single letter names we are using index numbers for the components.

P E⋅ =

L

N

MMMM

O

Q

PPPP
= + + + =∑P P P P

E

E

E

E

P E P E P E P E P Ei
i

i

1 2 3 4

1

2

3

4

1
1

2
2

3
3

4
4

In fact, we can save valuable ink by noticing that the summation occurs so often that we can declare that it
is implied by the fact that the point index and plane index are the same letter. This is often emphasized by
the convention of using Greek letters for indices that are summed over. Thus the product of a point and a
plane is

P Eα
α

This expression is a sort of prototype of the terms that are summed over. This might take a bit of getting
used to, but it's worth it. This notation is credited to Albert Einstein, who invented it to shorten his
calculations for general relativity; it is therefore called Einstein Index Notation.

We can make all of our row/column confusion go away by the following rule:

Each index that is summed over must occur someplace in the prototype term exactly once as a
covariant index and once as contravariant index. These indices “annihilate” each other, and the
resultant product has one less of each kind of index.

Indices that are not summed over are called free indices. They must occur just once in the prototype term,
and the same index must occur in the resultant term. For example, the product of two matrices in the old
notation is

T MN=

In the new notation this would be

T M Nj
i

j
i= α
α

Now for a shocker:

M N N Mj
i i

j
α

α α
α=

But, you say, matrix multiplication is not commutative! And you are right. The above expression is not the
whole matrix product; it is a prototype for each term in the product. Within the term you just have numbers
being multiplied; that is commutative. So, to mix metaphors somewhat, the two orderings of multiplication
are

MN = =M N N Mj
i i

j
α

α α
α
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and

NM = =N M M Nj
i i

j
α

α α
α

The New Order
Let's now reinterpret all of the above confusion in terms of this notation. First let's do the obvious stuff.

Points and Planes
A point has a single contravariant index,

Pi

A 2DH line or 3DH plane has a single covariant index,

Ei

A point times a line/plane is a scalar

P E sα
α =

If it's zero the point lies on the line.

Quadrics
A quadric curve or surface has a pure covariant form for dealing with points. Note that both the points have
their accustomed contravariant indices.

P Q Pα
αβ

β = 0

The polar line to a quadric curve and the polar plane to a quadric surface is

E P Qi i= α
α

Note again the delightful consistency of indices.

The dual form of the quadric for testing line/plane tangency is pure contravariant

E Q Eα
αβ

β
~ = 0

Both line/planes have their accustomed covariant indices. The tilde over the Q is kind of redundant since
the placement of the indices tells us everything, covariant for the normal form and contravariant for the
dual form. We won't bother with the tildes any more; yet more clean ups.

The contravariant form of Q is the adjoint of the covariant form. This leads to another convenient rule that
we will expand upon later. For now I'll just state:

Taking an adjoint flips the type of its indices

This means that the adjoint of a mixed tensor (which is a transformation matrix) is also a mixed tensor. If
the only type of matrix you encountered was a transformation matrix, you wouldn't know there was such a
thing as covariant or contravariant tensors.
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3DH Lines
A 3DH line has a pure covariant tensor or a pure contravariant tensor. The plane containing the line and a
point P uses the covariant form

P L Ej j
α

α =

The point of intersection of the line and a plane E uses the contravariant form

L E Pi iα
α =

Transformations
A transformation matrix is a mixed tensor. It can transform a point

′ =P P Ti ia f α
α

or it can transform a line (2DH) or a plane (3DH):

′ =E T E
i ia f α

α

The covariant form of Q transforms like

′ =Q T Q T
ij i j

a f d i d i* *α
αβ

β

Notice that we no longer need to use the superscript T to express transpose; the relevant indices are just
swapped. Yet more economization. Explicit notation for adjoints is still necessary for now.

The contravariant form of Q transforms using T

′ =Q T Q Tij i ja f α
αβ

β

Likewise, the covariant form of the 3DH line L transforms like

′ =L T L T
ij i j

a f d i d i* *α
αβ

β

The contravariant form transforms like:

′ =L T L Tij i ja f α
αβ

β

This is an example of the general transformation rule

To transform something, multiply in a T for each contravariant (point-like) index and a T* for
each covariant (plane-like) index.

In fact, all these things are called tensors precisely because they transform according to this rule.

There is an interesting consequence of this. In order to transform a transformation matrix we must multiply
both T and T* . Calling the transformation matrix M

′ =M T M T
j
i

j

ia f d i* β
β
α

α
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This is a nice way of representing the standard trick of scaling about an arbitrary point by transforming the
point to the origin (T*), scaling about the origin (M), and transforming back (T).

The Magic Epsilon
You might have noticed that we've encountered a lot of expressions of the form

det
p p

r r
1 2

1 2

L
NM

O
QP

There's another gimmick that the physicists have come up with that's useful to abbreviate this type of thing:
it's the Levi-Civa epsilon. In this chapter I can give just a hint of the wonders in store for us when using
epsilon. To start out let's discuss this just in 2DH (3D) terms.

The 3D (2DH) epsilon
The three dimensional epsilon tensor has three indices, so it looks like

ε ijk

Its elements are defined to be

ε ε ε
ε ε ε
ε

123 231 312

321 213 132

1

1

0

= = =
= = = −
=ijk otherwise

You can visualize ε by thinking of it as a cube of numbers made by stacking up the matrices:

0 0 0

0 0 1

0 1 0−

L

N
MMM

O

Q
PPP
,

0 0 1

0 0 0

1 0 0

−L

N
MMM

O

Q
PPP

,

0 1 0

1 0 0

0 0 0

−
L

N
MMM

O

Q
PPP

Multiplying two points P and S by epsilon gives

P S Li i
α β

αβε =

a covariant vector. What is it? To find, say, the first element let's write down all the terms containing an
epsilon that is nonzero.

L P S

P S P S P S P S

1 1

2 3
231

3 2
321

2 3 3 2

=

= + = −

α β
αβε

ε ε

The other elements look similar. L is, in fact, the cross product of P and S, that is, the line connecting them.

There is also a contravariant epsilon that has the same numerical values. You can use it to take cross
products of lines to find their point of intersection.

L K Pi i
α β

αβε =
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Notice that I didn't even need to tell you that K was a line. You could tell by seeing that it has a single
covariant index.

The epsilon can also be used to calculate adjoints. It turns out that

M M M
ij j i*d i = 1

2 ε εαβ γδ
αγ βδ

Where does the 1/2 come from? Well, as an exercise, write down all the nonzero epsilon terms implied by
the summation over α, β, γ, and δ. You will find that each product of the M terms will appear twice,
requiring ½ to compensate. We can, however, ignore the ½ since we are being homogeneous.

The above is for pure covariant matrices; note how the result is contravariant. If you start with a
contravariant matrix you multiply by two covariant epsilons and get a covariant result. For a mixed matrix
you must multiply by one covariant and one contravariant epsilon and you will get a mixed result.

The 4D (3DH) epsilon
There is also a four dimensional epsilon that has four indices. It's defined by

ε ijkl

ijkl

ijkl= −
R
S|
T|

1

1

0

if is an even permutation of 1234

if is an odd permutation of 1234

otherwise

Given this, we can compactify a lot of the formulae for 3DH stuff.

The plane through three points is

E P S Ri i= α β γ
αβγε

The point common to three planes uses the other form

P E F Gi i= α β γ
αβγε

The adjoint of a 4×4 matrix is

M M M M
ij j iabc

a b c
*d i = 1

6 ε εαβγ
α β γ

Again, this is for a covariant matrix. Contravariant and mixed matrices require the same treatment as for
2DH.

The 3DH line through two points P and R is the covariant matrix

L P Rij ij= α β
αβε

The plane containing this line and another point S is

E S Li i= α
α

You find the contravariant version of a line by intersecting the two planes E and F:

L E Fij ij= α β
αβε
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The point of intersection of this line with another plane G is

P L Gi i= α
α

The covariant and contravariant line forms are related by

L Lij ij= ε αβ
αβ

Admittedly, implementing some of the above calculations by explicitly multiplying by epsilon is a bit
idiotic. You wind up multiplying by a whole lot of zeroes and ones. The epsilon notation is good as a
bookkeeping convenience.

What we’ve learned so far
All of geometry is reduced to tensor multiplication (well, almost all). And there are no embarrassing
transposes. The concept of Row-ness or column-ness is superseded by the more general concept of
covariant and contravariant indices. Plus we can feel really cool by sharing notation with General
Relativity.

Everything is a tensor. A tensor is a multiply indexed array of numbers that transforms in a certain special
way. Each index of a tensor can be one of two types: covariant or contravariant. We write covariant indices
as subscripts and contravariant indices as superscripts.

A column vector in the old matrix notation becomes a tensor with a single covariant index and is called a
covector. These typically represent lines (2DH) or planes (3DH). A row vector in matrix notation becomes
a tensor with a single contravariant index. I'll simply call them vectors. These typically represent points in
2DH or 3DH.

Now, in standard 3D geometry you can form dot products of vectors and you can form cross products of
vectors. There are a lot of calculations (notably lighting calculations) that take place in this Euclidean 3D
space. In our homogeneous scheme, however, you can only form the dot product of a vector with a
covector; you can't take the dot product of a vector with another vector. You use the cross product to
combine two vectors, and the result is a covector. I'll stick with these rules throughout this chapter..

Tensor multiplication (a generalization of the dot product) involves summing over a pair of covariant and
contravariant indices. A typical expression looks like

A B Cj
i

j
i

α
α =

Summed indices (here, α) are called bound indices and disappear from the result. Unsummed (free) indices
(the i and j) survive in the result. Since bound indices are purely local to the summation, we can arbitrarily
change their name; we could just as well have written the above equation as

A B Cj
i

j
i

β
β =

Free indices, however, can only be renamed globally; you have to do it consistently for each term on each
side of an equation. Index name bookkeeping is one of the biggest pains of this method.

In the last chapter I also introduced the special tensor called ε. We can use ε to abbreviate the following
tensor operations.

The cross product
A B C× =

becomes
A B Ci i

α β
αβε =
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The adjoint of a 3x3 matrix becomes

M M M
ij j i*d i = 1

2 ε εαβ γδ
αγ βδ (1)

In homogeneous land we can drop the factor of 1/2.

The 3D (2DH) Epsilon-Delta Rule
If you multiply two epsilons together along one index, the rules of tensor multiplication give

ε εα
α

jk
lm

jk
lmD=

a 4-index mixed tensor. Since ε is filled with a fixed pattern of 0’s, +1's, and −1's, you can work out the
values of D. They turn out to be

D

l j m k l m

m j l k l mjk
lm =

+ = = ≠
− = = ≠
R
S|
T|

1

1

0

if

if

otherwise

; ;

; ;

You can write this in a more compact form by inventing yet another special tensor called δ.

δ j
i i j

=
=RST

1

0

if

otherwise

In other words, δ is just an identity matrix. This might seem a bit pointless at first, but it lets us write the
above as:

ε ε δ δ δ δα
α

jk
lm

j
l

k
m

j
m

k
l= − (2)

This fundamental identity is called the epsilon-delta rule and is useful as a way to simplify any expression
you come across that contains the product of two epsilons.

A Simple Application
Take, for example, the following common 3D vector identity:

A B C A C B A B C× × = ⋅ − ⋅a f a f a f (3)

First let's see if this makes sense in our homogeneous world of vectors and covectors. B and C can be
vectors (that is,. 2DH points). Their cross product is a covector (a 2DH line). We cross this with A, which
means that A must be a covector too. The result is a vector. Now look at the right side of the equation. It's
also a vector, a weighted sum of the two vectors B and C. The weighting factors are dot products between
vector-covector pairs. Everything fits in consistently with our scheme.

Writing the left side in Einstein index notation we get:

A B Ci
j k

jkl
ilmε εd i

In this expression the letters i, j, k and l are all bound indices (since they each appear exactly twice)
indicating that they are implicitly summed over. The letter m is a free index, indicating that the net result is
a vector with the single superscript index m.
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We are going to want to apply the epsilon-delta rule, but its definition (equation 2) has different letters for
the indices on the epsilons. We can make our expression more similar to it by shuffling the indices of the
epsilons to get the common summed index, l, as the first one. This is legal as long as we do an even
permutation of the indices.

A B Ci
j k

ljk
lmiε ε

Then we need to do some pattern matching with equation 2. It's actually easiest to rewrite equation 2,
renaming the indices to match up with the above expression. (This sort of thing is a nuisance we will be
able to avoid with the graphical method.)

ε ε δ δ δ δljk
lmi

j
m

k
i

j
i

k
m= −

Stuff in the deltas for the product of the epsilons and you get

A B Ci
j k

j
m

k
i

j
i

k
mδ δ δ δ−d i

multiply out and apply several identities of the form

A Ai k
i

kδ =

You get

A B C A B Ck
m k

j
j m−

which, in old style vector notaton is

A C B A B C⋅ − ⋅a f a f
Ta daa...

A geometric interpretation of this algebra appears in the following figure.

B

C

A

Ax(BxC)

It's a two dimensional version of the perspective shadow calculation I described in chapter six of A Trip
Down The Graphics Pipeline. Think of B as a light source casting the shadow of point C onto the ground
line A. The two sides of the equation are two ways of thinking about calculating the shadow location. You
can think of it as finding the line through B and C, (B×C), and intersecting that line with line A,
(A×(B×C)). Alternatively you can parametrize the line through B and C as a linear combination of the
vectors B and C

α βB C+

The α,β pair forms a one dimensional homogeneous coordinate for points on the line. Force this point to
be on the line A by

A B C⋅ + =α βb g 0
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or

α βA B A C⋅ + ⋅ =a f a f 0

a solution to this equation is

α
β

= ⋅
= − ⋅

A C

A B

so the intersection is

A C B A B C⋅ − ⋅a f a f

Quadric/Line Tangency
Here's another use for the epsilon-delta rule.

Earlier I noted that a symmetric 3x3 covariant tensor, Q, represents a second order curve (conic sections
and the like). For points on the curve

P PTQ = 0

Then I baldly stated that a line, L, is tangent to the curve if

L LTQ* = 0

where Q* is the adjoint of Q. Why should you believe me (other than the fact that I am extremely
trustworthy)? We need to express the fact that L and Q have exactly one point in common. To do this we
write an arbitrary point of L in the same way as mentioned above—as the weighted sum of two distinct
points of L.

P R S= +α β

How, you might ask, do we decide what to use for R and S? Well, it doesn't matter. It's one of the funny
things that often happen in mathematical proofs. We never actually have to know explicit coordinates for R
or S, we just have to know that they exist and that

L R S= ×

The points of L that intersect Q have

P PTQ = 0

or

α β α βR S R S T+ + =b g b gQ 0

Multiplying this out and remembering that Q is symmetric gives

α αβ β2 22 0R R R S S ST T TQ Q Qd i d i d i+ + =

This is a homogeneous quadratic equation in α β,b g of the form
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α αβ β2 2 0a b c+ + =

If L is tangent to Q this equation should have exactly one solution. Remembering our high school algebra
this condition is

b ac2 4 0− =

For our particular quadratic equation this translates to:

4 4 0
2

R S R R S ST T TQ Q Qd i d id i− =

We want to show that this condition is the same as

L L R S R ST TQ Q* *= × × =a f a f 0

At this point, with conventional vector-matrix notation we're stuck. There's no convenient way to use the
commonality between cross products and matrix adjoints.

Einstein to the rescue. Write the two expressions in Einstein index notation. The first is

R Q S R Q S R Q R S Q Si
ij

j k
kl

l i
ij

j k
kl

l−

and the second is

R S Q Q R Si j
ijm

m n k l
klnε ε ε εαβ γδ

αγ βδd ie jd i1
2

You can then show that these two expressions are equal by doing a lot of renaming of indices and using the
epsilon-delta rule twice. It works, but you have to be careful to keep all 10 index names straight. We want a
still simpler scheme.

The 4D (3DH) Epsilon-Delta Rule
The somewhat imposing 4D version of the epsilon delta rule is

ε ε δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ
α

α
ijk

lmn
i
l

j
m

k
n

i
m

j
n

k
l

i
n

j
l

k
m

i
l

j
n

k
m

i
m

j
l

k
n

i
n

j
m

k
l

= + +

− − −

This is what you must use if you are solving problems in 3D homogeneous coordinates. Note that all the
delta terms have the same subscripts, but they just have even or odd permutations of the (lmn) letters in
their superscripts.

From this we can evaluate another useful identity. Form the double summation by setting i l= above.
When you simplify, remember that a delta summed with itself is the trace of the identity—in 4D this would
be the constant 4. That is

δ i
i = 4

When you work this out, it looks a lot like our old friend the 3D (2DH) rule

ε ε δ δ δ δα
α

ijk
imn

j
m

k
n

j
n

k
m= −2d i
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Addendum
A Programming Application

This vector/covector distinction can take on practical significance in the programming arena. One game
that's currently played with modern programming languages is to define compound data types and to
overload all the language's arithmetic operators to do arithmetic on the new data type. For example, one
might define a data type for vectors (as a triple or a quadruple of numbers) and then define vector addition
for the “+” operator, vector subtraction for the “−“ operator, etc. in the obvious way. The problem comes
when you get to multiplication. Of the two types of vector multiplication, the dot product and the cross
product, which one should be meant by the “*” symbol? Now that we realize that there are two types of
vectors we can remove the ambiguity. We need to define two different data types: vectors and covectors.
The storage structure, addition and subtraction operators are the same for both of these but multiplication
depends on the operand type. Suppose the variable S is declared to be a scalar, V1 and V2 are vectors and
C1 and C2 are covectors. Expressions containing the multiplication operator should be interpreted as
follows

expression product result

S*V1 scalar vector

S*C1 scalar covector

V1*C1 dot scalar

V1*V2 cross covector

C1*C2 cross vector
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A First Look At
Tensor Diagrams
This chapter is cannibalized from

Uppers and Downers, Part 2
in Jim Blinn’s Corner: Dirty Pixels

3D(2DH) Diagram Notation
The basic technique is adapted from a book called Diagram Techniques in Group Theory (reference:
Stedman, Geoffrey E., Diagram Techniques in Group Theory, Cambridge University Press, United
Kingdom, 1990). We represent the product of a bunch of tensors in diagram form as a directed graph. The
encoding is as follows

• Each tensor in the product is a node in the graph.

• Each index is an arc. A contravariant index is directed away from the node, a covariant index is
directed towards the node.

• Bound indices (those that are summed over) are arcs connecting two nodes. The directedness of the arc
represents the fact that you can sum only over a contravariant-covariant pair of indices.

• Free indices are “dangling” arcs.

The nice thing about this is that bound indices don't need to be named (although I will sometimes do so
here to more easily relate the Einstein index notation to the diagram notation). Only the topology of this
diagram is important. Any rearranging that preserves topology is OK except for mirror reflections. These
are not allowed since they imply transposition of some of the tensors. This is simply a sign flip for epsilon
but might change the value of a nonsymmetric tensor.

Here are some examples.

A point is Pi iP

A line Li
iL

The dot product of a point and a line P Lα
α

P α

L

which is topologically equivalent to P α
L

A transformation matrix Tj
i

T
ij

A transformed point P Tiα
α T

iα
P
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We write the special tensor epsilon (in either its covariant or contravariant forms) using a dot for the node
and labeling index arcs counterclockwise around the node.

Covariant epsilon ε ijk

jk

i

Contravariant epsilon ε ijk

jk

i

The cross product of two vectors is

Cross product P R i
α β

αβε
b

a
i

P

R

Note that mirroring this flips the sign.

Equation 1 for the adjoint of a matrix appears in diagram form as

Adjoint of M 1
2 ε εαβ γδ

αγ βδ
j i M M M M

1/2

This is a bit clumsy. We can flip the lower epsilon over to make it a bit prettier but must compensate by
prefixing with a minus sign.
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Adjoint of M 1
2 ε εαβ γδ

αγ βδ
j i M M M M

-1/2

If we multiply the adjoint by the original matrix we get the identity matrix times the determinant of the
original matrix. The trace (sum of the diagonal elements) of this 3×3 matrix is then three times the
determinant. I'll leave it for you to verify that, graphically, the determinant of a matrix is proportional to

M MM

Since we are not concerned with scale factors, the only interesting feature of a determinant is whether it's
zero or not. In other words, if the above diagram (which evaluates to a scalar) is zero, then the matrix is
singular.

The other special symbol, delta, is just written as an arc (when necessary I will label it with two labels)

Kronecker
delta

δ j
i j i

The Diagram for Epsilon-Delta
Now we get to the interesting part: the epsilon delta rule in diagram notation. Compare this with equation 2
to see how the index names work. Note especially that the arcs are carefully labeled counterclockwise
around both epsilon nodes.

= −

m

j

α

j j

l

k k k

l lm m

As an example, our proof of the vector identity of equation 3 in diagram notation looks like



A First Look At Tensor Diagrams

James F. Blinn

37

= −

m

j

α

j

l

k k

l
m
AA

B BC C

j k

l
m

A

B C

When I used this to calculate the perspective shadow I was primarily interested in a finding a
transformation matrix to apply to arbitrary points C. In diagram notation this transformation is just

=

A

B

T

Note that this diagram has one covariant and one contravariant free index and thus qualifies as a
transformation matrix.

Now we can do the line tangency proof diagrammatically. To show the essence of the proof I've left out the
cluttering index names, a few global scale factors, and even the arrows. This diagram is

− +=

= 2 − 2

S R

QQ

R S

S R

QQ

R S

S R

QQ

R S

S R

QQ

R S

S R

QQ

R S

−

R R

QQ

S S

R S

QQ

R S

4D(3DH) Diagram Notation
The generalization of this to 4D(3DH) is generally straightforward. The only tricky part is the Levi-Civita
epsilon symbol. This section is mostly a discussion about that.

One of the nice things about diagram notation is that any geometric rearrangement of the diagram does not
affect the algebraic result. We cannot use totally arbitrary diagram manipulations however. Anti-
symmetric tensors, like epsilon, could have their sign changed if we are not careful. In three dimensions
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(and homogeneous two-dimensional geometry) this epsilon tensor has three indices and is written ε ijk . The
values of the components are

ε ε ε
ε ε ε
ε

123 231 312

321 213 132

1

1

0

= = =
= = = −
=ijk otherwise

A cyclic permutation of the indices of ε doesn't change its value, that is

ε ε εijk jki kij= =

In the diagram, we didn't need to explicitly identify which index was first. As long as you labeled them
counterclockwise, you could start with any arc. As long as any diagram rearrangements do not permute the
indices of the epsilons in such a manner that the sign changes we are OK. In three dimensions this means
that mirror reflections are disallowed, as they are equivalent to an odd permutation of indices. (You can do
mirror reflections, though, if you remember to introduce a minus sign into the diagram.)

i

k

ijkε

=   −

ijkε−

j

i

kj

In four dimensions (used for homogeneous three-dimensional geometry) the epsilon tensor has four indices,
ε ijkl whose values are

ε
ε
ε

ijkl

ijkl

ijkl

ijkl

ijkl

=

= −

=

1

1

0

if is an even permutation of 1234

if is an odd permutation of 1234

otherwise

In contrast to 3D, in 4D a cyclic permutation does change the sign, that is

ε εijkl jkli= −

In 4D diagram notation the 4D epsilon is simply be a four-pronged node. An odd permutation of indices
for the 4D epsilon is not so geometrically obvious if the diagram form is simply a node with four lines, as
in

ijk

=   −

ijk

i

k

j
l

i

k

j
l

ijklε ijlk ijklε ε= −

We have to be careful, however. . In 4D(3DH), we would like a similar no-mirroring rule for the four-
dimensional epsilon diagram. We need make sure the diagram notation allows us to keep track of this.
There are two ways to do this. The sign of the four dimensional epsilon is not changed by mirror
reflections (a mirror reflection generates an even permutation of the four arc/indices.) It is changed,
however, by starting the counting of the indices at a different arc, as in the above figure.

Way 1

For this reason, the books I have read introduce an extra flag between the intended first and last arc in the
four dimensional epsilon to mark the initial index. This flag makes the node look like it has five arcs and
thus a mirror reflection will then change the sign. The diagram is
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ijklε
ijk÷

i

k

j
l

ijklε

Exchange of any neighboring arcs (counting the tick mark as an honorary arc for now) flips the sign. In
fact, in 4D, mirroring just the epsilon portion of a diagram does not change the sign.

These are the rules for allowable diagram rearrangements that I have seen in books. They always seemed
klugy to me.

Way 2

Then I realized that the elegance of the diagram notation could be restored by simply expressing four-
dimensional tensor multiplication as a three-dimensional diagram. The four-arc epsilon would then have
arcs directed to the vertices of a tetrahedron. Even permutations of the indices become simple three-
dimensional rotations of the epsilon tensor diagram. Odd permutations become mirror reflections, so
mirroring is disallowed just as in two-dimensional diagrams.

ijklε

j

k

l

i

Given this scheme, let’s look at some more constructions

The 3DH homogeneous line
between two points is

P R Lij ij
α β

αβε =

P

R

j

b

a
i

L

j

i
=

Note that this tensor has two covariant indices. We can convert it to the contravariant form by
multiplication by the 4D epsilon. This implements conversion between the “K form” and “L form” of the
4x4 line matrix as discussed in the previous chapter on homogeneous lines.
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The contravariant form is L Lij ij
αβ

αβε = L L=

a

b

j j

i i

The 4D epsilon delta rule in 4D is

ε ε δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ
α

α
ijk

lmn
i
l

j
m

k
n

i
m

j
n

k
l

i
n

j
l

k
m

i
l

j
n

k
m

i
m

j
l

k
n

i
n

j
m

k
l

= + +

− − −

The diagram looks like.

i

j

k

n

m

l

α
i

j

k

n

m

l

i

j

k

n

m

l

i

j

k

n

m

l

i

j

k

n

m

l

i

j

k

n

m

l

i

j

k

n

m

l

=

− −

+

−

+

Keep in mind that this diagram is three dimensional; the two joined epsilons look sort of like an acetylene
molecule. A mnemonic to help you remember it is to note that in the 2D projection of the diagram, the
positive terms have an odd number of crossings (one or three) and the negative terms have an even number
(zero or two). In three dimensions, the positive terms actually each have only one pair of arcs crossing.
(The first of the terms looks lik it has three arcs crossing, but the horizontal one is ctually closer to tyou
than the other two.) The negative terms have arcs that do not cross in three dimensions ( The apparent
crossings in the left tow negative terms do not actually cross in three dimensions; they are a dort of twisted
version of the straight-through rightmost negative term.

Let’s now look at the double summation

( )2mn m n n m
jk j k j k

αβ
αβε ε δ δ δ δ= −

This can be found graphically from the previous diagram by connecting the i and l branch together and
calling it β . This gives the following diagram

.
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=

− −

+

−

+

=

− −

+

−

+

Note that a closed loop is the graphical representation of δ i
i and is equal to 4, the trace of the 4x4 identity

matrix. This all simplifies to the following.

=  2 −  2

An Application
A sample application of this identity is as follows. Plug line A and points B and C into the diagram:

=  2 −  2

A

B C

A

CB

A

CB

It shows the 4D (3DH) perspective shadow calculation; Point B casts the shadow of point C onto plane A.
So, given that we will need to pass many point C’s through the rendering process, we can pre-compute the
transformation matrix T as:
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A

B

T =

(This is just the more realistic 3D generalization of the 2D problem we discussed earlier.)

References
Stedman, Geoffrey E., Diagram Techniques in Group Theory, Cambridge University Press, United
Kingdom, 1990.
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Polynomial Discriminants and
Curve Tangency

This chapter is cannibalized from my Jim Blinn’s Corner articles
Polynomial Discriminants, Part 1 and Part 2
IEEE Computer Graphics and Applications

Nov/Dec 2000 and Jan/Feb 2001
It reiterates some of what is in the previous chapters.

I like beautiful equations. But beauty is sometimes subtle, or hidden by bad notation. In my next few
columns I am going to reveal some of the hidden beauty in the explicit formulation of the discriminants of
polynomials. Along the way I will drag in some clever algebra, promote some notational schemes from
mathematical physics, and illustrate some ways of visualizing homogeneous space. This will ultimately
lead us to some interesting ways to find roots of these polynomials, a task that will become more and more
important as we computer graphicists struggle to break free of the tyranny of the polygon and move into
rendering higher order surfaces.

So first, let’s review discriminants.

Discriminants
I‘ll to soften you up a bit by starting with something already familiar: the quadratic equation.

Quadratics
A general quadratic equation is

2 0ax bx c+ + =
We learn in high school that the solution of this equation is

2 4
2

b b ac
x

a

− ± −=

The discriminant is the value under the square root sign.

2 4b ac∆ = −
The polynomial will have 0, 1, or 2 real roots depending on the sign of the discriminant. If it is negative,
there are no real roots, if positive there are two distinct real roots, and if the discriminant is zero there is a
double root (i.e. two coincident real roots). (See figure 1). A more generalizable way to way to derive the
discriminant is to note that it is zero if there is some parameter value where both the function and its
derivative are zero. In other words we want to simultaneously solve:

2 0

2 0

ax bx c

ax b

+ + =
+ =

To find if this is possible for a given quadratic, just solve the derivative equation for x and plug it into the
quadratic. The result is an expression in abc that simplifies to the above discriminant.

Cubics
Stepping up to cubic equations, we have:

3 2 0ax bx cx d+ + + =
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As with quadratics, we can find the discriminant by equating the function and its derivative to zero

3 2

2

0

3 2 0

ax bx cx d

ax bx c

+ + + =
+ + =

(0.1)

We can find the discriminant --- the condition on abcd that makes this possible--- by various methods. We
could solve the quadratic for x and substitute that into the cubic equation. A more general technique is to
form the, so-called, resultant of the two polynomials. This basically involves taking various linear
combinations of them to form new polynomials of lower degree. I won’t go into details here, but for cubics
this process leads to something called the Sylvester determinant [ref 2]

0 3 0 0

2 3 0
1

det 2 3

0 2

0 0 0

a a

b a b a

c b c b a
a

d c c b

d c

 
 
 

∆ =  
 
 
  

A similar technique is Bezout’s method. [ref 2] This also takes various linear combinations to construct a
smaller but more complicated matrix. We ultimately get

2 3
1

det 2 3 2

3 2

ab ac a

ac ad bc b
a

ad bd c

 
 ∆ = + 
  

Of course we could take the easy way out and just look it up on the web [ref 1]. The result is

2 2 3 3

2 2

4 4

18 27

c b db c a

abcd d a

∆ = − −
+ −

(0.2)

This ungainly mess is rather harder to remember than the quadratic discriminant. But it is useful. If it’s
negative the cubic has exactly one real root, if positive there are three distinct real roots. And if it’s zero the
cubic has a double root and another single root. This discriminant looks really ugly in its explicit form. But
there is an interesting pattern embedded in it. Finding that pattern is our mathematical journey for this
chapter.

A Homogeneous Matrix Formulation
My first urge in any algebraic discussion is to write things in homogeneous form, in this case as
homogeneous polynomials. This generalizes the parameter value from the simple quantity x to the
homogeneous pair [x w]. The homogeneous quadratic equation is

2 2 0ax bxw cw+ + =
The main thing that homogeneity brings to the party is the addition of a new “parameter at infinity” at the

value [ ] [ ]1 0x w = . This means that if the parameter a is zero, the quadratic does not simply

degenerate into a linear equation. Instead, it remains a quadratic, but it simply has one of its roots at
infinity (w=0)

Next I want to indulge an even stronger algebraic urge: to write things in matrix form. To make this a bit
neater I will first modify the notation for the coefficients to build in some constant factors. I’ll write the
quadratic equation as

2 22 0Ax Bxw Cw+ + =
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This allows us to write the quadratic equation as a symmetric matrix product

[ ] 0
A B x

x w
B C w

    =   
   

(0.3)

(This way of representing a quadratic is related to a technique known as blossoming.) The solutions now
become

2

2

2 4 4
2

B B AC
x

A

B B AC

A

− ± −=

− ± −=

And the discriminant is 2B AC− , which we can recognize as minus the determinant of the coefficient
matrix

det
A B

B C

 
∆ = −  

 
Neat. We’ve expressed the formula for the discriminant in terms of a common matrix operation: the
determinant.

Bumping up to cubics, I will again rename the coefficients

3 2 2 33 3 0Ax Bx w Cxw Dw+ + + = (0.4)

To make a matrix representation of this analogous to equation (0.3) we want to arrange these coefficients
into a 2x2x2 symmetric “cube” of numbers. There are various ways to show this but they are all a bit
clunky. About the best you can do with conventional matrix notation is to think of the coefficients as a
vector of 2x2 matrices. Equation (0.4) becomes

[ ] 0
A B B C x x

x w
B C C D w w

           =         
          

(0.5)

Once we have this triply indexed cube of numbers, we expect that the discriminant will be some sort of
cubical generalization of the determinant. Let’s find out what it is.

A Kinder, Gentler Cubic Discriminant
The defining property of the discriminant is that it is the condition that there is a parameter value where
both the function and its derivative are zero. For a homogeneous cubic, we want the condition on (ABCD)
that allows simultaneous solution of

( )
( )
( )

3 2 2 3

2 2

2 2

, 3 3 0

, 3 6 3 0

, 3 6 3 0

x

w

f x w Ax Bx w Cxw Dw

f x w Ax Bxw Cw

f x w Bx Cxw Dw

= + + + =

= + + =

= + + =

(0.6)

To visualize what this means, note that having both the partial derivatives of f be zero means that the f
function is tangent to the f=0 plane at that point. That is, there is a double root there. (Figure 3?)

Comparing this with the formulas in (0.1) it looks at first that going to homogeneous polynomials gives us
an extra equation. But it really doesn’t. That’s because of the identity
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3 x wf xf wf= +

So the new derivative is just a linear combination of the function and the original x derivative. This means
that we can pick any two equations out of (0.6) to work with further. I don’t know about you, but the two
I’m going to pick are the two lower order ones. Tossing out a constant factor of 3 we get the following two
equations that we want to solve simultaneously

2 2

2 2

2 0

2 0

Ax Bxw Cw

Bx Cxw Dw

+ + =
+ + =

(0.7)

Linear combinations helped us before; let’s see what else they can do for us. If the two equations above are
both zero, then any linear combination of them is zero too. We can get an equation without an x^2 term by:

( )
( )
( ) ( )

2 2

2 2

2 2

2

2

2 0

B Ax Bxw Cw

A Bx Cxw Dw

B AC xw BC AD w

+ +

− + + =

− + − =

And we can symmetrically get an equation without the w^2 term by:

( )
( )
( ) ( )

2 2

2 2

2 2

2

2

2 0

D Ax Bxw Cw

C Bx Cxw Dw

AD BC x BD C xw

+ +

− + + =

− + − =

Tossing out common factors of x and w we see that we have knocked the simultaneous quadratics in
equation (0.7) down to two simultaneous linear equations.

( ) ( )
( ) ( )

2

2

2 0

2 0

B AC x BC AD w

AD BC x BD C w

− + − =

− + − =
(0.8)

What we are saying is that if equations (0.8) can be satisfied, then equations (0.7) can be also. Each of the
equations in (0.8) is easy to solve. The condition that the two solutions be equal leads us to

( )
( )2

2

2

2

BD Cx AD BC

w AD BCB AC

− −−= =
−−

The final expression for the discriminant is then

( ) ( ) ( )2 2 24BC AD C BD B AC∆ = − − − − (0.9)

If we multiplied this out and did the conversion from ABCD to abcd we would get equation (0.2), but
equation (0.9) is certainly a lot prettier. But wait, it gets better.

With some imagination we can recognize that the various parenthesized quantities in equation (0.9) are
(with a few sign flips that cancel each other out) just the determinants of various slices of the cube of
coefficients. Let’s give them names
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2
1

2

2
3

det

det

det

A B
AC B

B C

A B
AD BC

C D

B C
BD C

C D

 
∆ = − =  

 
 

∆ = − =  
 
 

∆ = − =  
 

We can now write the cubic resultant as

2
2 1 34∆ = ∆ − ∆ ∆

I love symmetry in algebra. You will note that any time we come up with something that is the difference
of two products I have an irresistible urge to write it as the determinant of a 2x2 matrix. And if it is the
difference between the square of something and another product, I want to make it the determinant of a
symmetric matrix. Satisfying this urge one more time gives

1 2

2 3

2
det

2

∆ ∆ 
∆ = −  ∆ ∆ 

(0.10)

In other words, the cubic discriminant is a determinant of determinants. If this discriminant is zero we
know that there is a double root. And we know what it is. In fact we have two formulations of it.

Rewriting equation(0.8) in terms of the i∆ we have

32

1 2

2

2

x

w

− ∆−∆= =
∆ ∆

Or, in more homogeneous terms the two equivalent formulations become

[ ] [ ]2 12x w = −∆ ∆

[ ] [ ]3 22x w = ∆ −∆

Back To Our Roots
There is one more useful piece of information hidden here. To find it I’ll expand the polynomial in terms
of its roots. It will also be a little less cluttered if we go back to the non-homogeneous version.

( ) ( ) ( )
( ) ( ) ( )

2

1 2

2 23 2
2 1 2 1 2 2 12 2

f x x r x r

x r r x r r r x r r

= − −

= + − − + + + −

The coefficients in our notation scheme are

2 1

2
22 1 2

2 1

2
1

3

2
3

r r
A B

r rr
C D r r

− −= =

+= = −
(0.11)

Plugging these into the definitions of the i∆ and doing some simplifying we get:
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( )

( )

( )

2

2 1
1

2

2 2 1
2

22
2 2 1

3

9

2

9

9

r r

r r r

r r r

−
∆ = −

−
∆ =

− −
∆ =

(0.12)

This means that if there is a triple root, where 1 2r r= , then not only is Delta=0 but all three components

are zero 1 2 3 0∆ = ∆ = ∆ =

So, I’ll summarize.

• For a quadratic, write the coefficients as a symmetric 2x2 matrix. The discriminant is minus the
determinant of the matrix. If this is zero, the quadratic has a double root.

• For a cubic, write the coefficients as a symmetric 2x2x2 cube of numbers. Calculate the three sub-

determinants 1 2 3∆ ∆ ∆ . If all three are zero, the polynomial has a triple root (at x B A= − ).

Otherwise, the discriminant is the determinant from equation (0.10). If this is zero then the cubic
polynomial has a double root (and an additional single root).

Behind The Curtain
The expression for the discriminant in equation (0.10) is a lot prettier than the one in equation. But we will
see that expressing them using these Tensor Diagrams is even more beautiful.

2D Homogeneous Geometry
Two-dimensional homogeneous geometry uses three element vectors, 3x3 matrices, 3x3x3 tensors etc, to
represent various objects. I will denote such quantities in upper case boldface to distinguish them from
polynomials discussed later. For example, a homogeneous point P is a three-element row vector, and a line
L is a three-element column vector. The point lies on the line if the dot product ⋅P L is zero. Table 1
shows different ways of expressing the dot product. Parts a, b, and c should be very familiar. Part d is the
aforementioned Einstein Index Notation. Part e is the Tensor Diagram version. I will review their meaning
below.

Table 1. Point on a Line

a 0ax by cw+ + =

b [ ] 0

a

x y w b

c

 
  = 
  

c 0⋅ =P L

d 0i
iP L =

e P Li = 0
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Moving up to curves, the points on a second order (quadratic) curve satisfy the equation in Table 2(a). We
can write this in matrix form by arranging the coefficients into the 3x3 symmetric matrix of Table 2(b).

Table 2. Point on a Quadratic Curve

a

2

2

2

2 2

2

0

Ax Bxy Cxw

Dy Eyw

Fw

+ +

+ +
+ =

b [ ] 0

A B C x

x y w B D E y

C E F w

   
    =   
      

c 0T⋅ ⋅ =P Q P

d 0i j
ijP Q P =

e P Q P = 0
i j

Next up, the points on a third order (cubic) curve satisfy Table 3(a). We can also write this by arranging
the coefficients into a 3x3x3 symmetric generalization of a matrix. Doing this with conventional matrix
notation is a bit weird. About the best we can do is to show it as a vector of matrices as in Table 3(b).

Table 3. Point on a Cubic curve

a

2 2 2 3

2 2

2 2

2

3 3

3 6 3

2 3

0

Ax Bx y Cxy Dy

Ex w Fxyw Gyw

Hxw Jyw

Kw

+ + +
+ + +

+ +

+ =

b [ ] [ ] 0

A B E

B C F

E F H

B C F x

x y w x y w C D G y

F G J w

E F H

F G J

H J K

   
   
   
      
     
      =                              

c 0i j k
ijkP P P C =
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d P = 0C

P

P

i
j

k

Now let’s talk about transformations. We geometrically transform points by post-multiplying by a 3x3

matrix: ′=PT P , and we transform lines by pre-multiplying by the adjoint of the matrix: * ′=T L L .
Table 4 shows various ways to write these expressions, as well as those for transforming curves.

Table 4. Transformations

Point Line Quadratic Cubic

a ′=PT P ( )* ′=T L L ( ) ( )* * T
′=T Q T Q messy

b ( )' ji j
iP T P= ( ) ( )* '

i

i jj
T L L= ( ) ( ) ( )* * '

i j

ij klk l
T Q T Q= ( ) ( ) ( ) ( )* * *i j k

ijk lmnl m n
T T T C C′=

c P T = P' =LT* L'
= Q'

QT* T*

= C'CT*

T*

T*

Finally, the cross product of two point-vectors P and R gives the line passing through them: × =P R L .
See table 5. In a dual fashion, the cross product of two line-vectors L and M gives their point of
intersection: × =L M P .

Table 5. The cross product

a
1

1 2 3 1 2 3
2

3

L

P P P R R R L

L

 
    × =     
  

b × =P R L

c i j
ijk kP R Lε =

d

P

R

= L
i

j k k
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The problem
In looking over these expressions we see that there are two hints that our notation has problems. The first
is the need to take the transpose of P when multiplying by Q. This is very fishy; column matrices are
supposed to represent lines, not points. In fact, there is something fundamentally different about matrices
that represent transformations and matrices that represent quadratic curves. We cannot, however,
distinguish between them with standard vector notation. The second problem is inability to conveniently
represent entities with more than two indices. Our attempt to arrange the coefficients of a cubic polynomial
into a triply indexed “cubical matrix” is an example of the problem.

Fortunately, there are two notational schemes that we can adapt from the world of theoretical physics to
alleviate these shortcomings. They are “Einstein Index Notation” (EIN) and the diagram notation I referred
to in my opening monologue. I originally called these “Feynman Diagrams” but there are enough
differences to give them the more appropriate name “Tensor Diagrams”. They are more like the diagrams
in [Kuperberg, Greg, Involutory Hopf algebras and 3-manifold invariants International Journal of
Mathematics, Vol 2, no. 1, (1991) pp 41-66, World Scientific Publishing Company.]

2DH Tensor Diagrams
Einstein index notation differentiates between two types of indices for vector/matrix elements: the point-
like ones (which we will call contravariant and write as superscripts) and line-like ones (which we will call
covariant and write as subscripts). Thus an element of a point-vector is Pi and an element of a line-vector is
Li. (Note that superscript indices are not the same as exponents. Mathematicians ran out of places to put
indices and started overloading their notation. Live with it.). Dot products happen only between matching
pairs of covariant and contravariant indices. Thus the dot of a point and a line is

[ ]1 2 3
1 2 3

i
i

i

P P P L L L

P L

 ⋅ = ⋅ 
=∑

P L

We simplify further by omitting the sigma and stating that any super/subscript pair that has the same letter

implicitly implies a summation over that letter. The EIN form of a dot product is then simply i
iP L . A

more complicated expression may have many tensors and superscripts and subscripts, and will implicitly be
summed over all pairs of identical upper/lower indices. (These summations are also called tensor
contractions). We can see this in the EIN for higher order curves in Table 2(d) and Table 3(c). Note that
the expression for EIN is basically a model for the terms that are summed. Each individual factor in the
notation is just a number, so the factors can be rearranged in any order, as was done in Table 3(c).

Tensor diagram notation is a translation of EIN into a graph. We represent a point as a node with an
outward arrow indicating a contravariant index. A line, with its covariant index, is a node with an inward
arrow. The dot product, i.e. the summation over the covariant/contravariant pair, is an arc connecting two
nodes. See the bottom rows of Tables 1 through 3 for the diagram notation of the expressions we have seen
so far. For many of the diagrams I will label the arcs with the index they correspond to in EIN. Some later,
more complex, diagrams will not need this.

Transformations
A transformation matrix has one contravariant and one covariant index. Multiplying a point by such a
matrix will “annihilate” its covariant index leaving a result that has a free contravariant index, making the
result be a point. Table 4(b) shows the EIN form of the transformation of various quantities. Row (c) of
the table shows how this translates into diagram notation. Now we can see the difference between the two
types of matrices. A transformation matrix has one of each type of index (denoted with one arrow out and
one arrow in); a quadratic matrix has two covariant indices (denoted with both arrows in). In Table 2(d)
the two covariant/contravariant index pairs annihilate each other to produce a scalar.
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Cross Products and Adjoints
We abbreviate the algebra for cross products and matrix adjoints by defining a three-index 3x3x3 element
anti-symmetric tensor called the Levi-Civita epsilon. The elements of epsilon are defined to be

123 231 312

321 132 213

1

1

0 otherwiseijk

ε ε ε
ε ε ε

ε

= = = +
= = = −

=
(0.13)

Multiplying two vectors by epsilon forms their cross product. Since epsilon has three subscript indices,
multiplying in two points with superscript indices will result in a vector with one remaining subscript index
(a line). The diagram form of epsilon is a node with three inward pointing arcs. We will show this node as
a small dot as in Table 5(d). You can imagine a similar table for the dual form, the cross product of two

lines: × =L M P . Just use a contravariant form of epsilon, ijkε , so that ijk k
i jL M Pε = and flip the

direction of all arrows in the diagram.

We must be careful about how the anti-symmetry of epsilon translates into a diagram. The convention is to
label the arcs counterclockwise around the dot. A mirror reflection of an epsilon diagram will reverse the
order of its indices, and therefore flip its algebraic sign.

Epsilon is also useful to form matrix adjoints. Table 6 shows various ways to denote the adjoint. The raw
EIN expression ikm jln

ij klQ Q ε ε gives twice the adjoint, so I had to insert a factor of ½ to get the correct

answer. I’ve chosen to mirror the diagram for the first epsilon in the EIN (and introduce a minus sign) to
make the whole diagram a bit prettier. These factors and signs clutter things up a bit but are necessary to
get right.

Table 6. The adjoint of a matrix

a *adj =Q Q

b ( )*1
2

mnikm jln
ij klQ Q Qε ε =

c

=

Q

Q

Q*

-1/2
i j

m k l n m n

Now that we have the adjoint, the determinant is not far behind: multiply the adjoint by Q and take the
trace (connect the two dangling arcs). The result is 3 times the determinant. Various notations appear in
table 7

Table 7. Determinant of 3x3 matrix

det Q

1
6

ikm jln
ij kl mnQ Q Q ε ε

Q

Q

Q

i

k

m

j

l

n

-1/6
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Homogeneous Polynomials
Now let’s go down a dimension and take a look at one-dimensional homogeneous geometry. This is
effectively the study of homogeneous polynomials. Basically we have the same thing as before, but
everything is now composed of 2 element vectors, 2x2 matrices and 2x2x2 tensors, which I’ll write as
lower case boldface. A homogeneous linear equation is written in various notations in Table 8.

Table 8. Homogeneous Linear
Equation

a 0Ax Bw+ =
b

[ ] 0
A

x w
B

  = 
 

c 0⋅ =p l

d 0i
ip l =

e p l = 0

Table 9 shows a homogeneous quadratic equation

Table 9. Homogeneous Quadratic
Equation

a 2 22 0Ax Bxw Cw+ + =

b [ ] 0
A B x

x w
B C w

    =   
   

c 0T =pqp

d 0i j
ijp p q =

e p q p = 0

Table 10 shows a homogeneous cubic equation. (Unfortunately I find that I have to use the letter C in two
contexts, once as a coefficient and once as a tensor name. Live with it.)

Table 10. Homogeneous Cubic Equation

a 3 2 2 33 3 0Ax Bx w Cxw Dw+ + + =
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b [ ] [ ] 0

A B

B C x
x w x w

wB C

C D

   
          =               

c 0i j k
ijkp p p c =

d p = 0c

p

p

The 2D Epsilon
The only slightly subtle item is the form of the 2-element epsilon. Instead of having three indices, each
with three values, the 2-element epsilon has two indices (making it a simple matrix) each with two values.
By analogy to equation (0.13) the contravariant form of epsilon is

12

21

1

1

0 otherwiseij

ε
ε
ε

= +

= −
=

In other words

0 1

1 0
ε  

=  − 

The Einstein notation is simply ijε or ijε and the diagram notation looks like

i j

I have purposely constructed this icon to be asymmetrical. The convention is that when the diagram points
down (as above) the first index is on the left. A mirror reflection of this diagram will perform a sign flip on
the value of the diagram. If the diagram were not asymmetrical, a mirror flip would not be detectable.

To drive this home, compare the EIN expressions

i j j i j i
ij ij jim n n m n mε ε ε= = −

with their diagram counterparts. The first equality represents a rotation, second has a reflection.
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=

= -

n

i j

m
mn

ij

mn

ij

Now let’s use the epsilon. The adjoint of a 2x2 matrix, by analogy to Table 6, is

( )* il ij lk
jkq qε ε=

i j

q

k l

We get the determinant by analogy to table 7: multiply this by q and take the trace. This gives twice the
determinant. Flip one of the epsilons to make the diagram neater. We get:

1
2 detij lk

jk liq q ε ε = q

= det qqq

i j

kl

-1/2

A 1DH Application: Discriminants
The discriminant of a polynomial is a condition on the coefficients that guarantees that the polynomial has
double root. In our last installment we learned how to write this quantity in matrix terms. Now let’s see
how this looks in diagram form. The discriminant of the quadratic polynomial from Table 5(a) is

2 det
A B

B AC
B C

 − = −  
 

In diagram form this is

1/2

q q

(0.14)

The discriminant of the cubic polynomial from table 6(a) is

1 2

2 3

2
det

2

∆ ∆ 
∆ =  ∆ ∆ 

(0.15)

where the matrix elements are defined as
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2
1

2

2
3

det

det

det

A B
AC B

B C

A B
AD BC

C D

B C
BD C

C D

 
∆ = − =  

 
 

∆ = − =  
 
 

∆ = − =  
 

What does this look like in diagram form? Let’s look at the individual “slices” of the c tensor. We form
these by multiplying one index by a “basis vector” like (1,0) or (0,1).

1,0 c = c1 =
A B

B C

 
 
 

0,1 c = c2 =
B C

C D

 
 
 

The determinants of these two matrices are

c1 c1 = 12det 2
A B

B C

 − = − ∆ 
 

c2 c2 = 32det 2
B C

C D
 − = − ∆ 
 

Now what happens if we mash together c1 and c2 as a sort of “cross determinant” with the diagram form:

c1 c2

The value of this diagram is, in conventional matrix form

2

2

2

0 1 0 1

1 0 1 0

0

A B B C
trace

B C C D

BC AD AC B
trace

C BD

BC AD

         =        − −        
  − −  =  −   

− = −∆
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Now, remembering the definitions of c1 and c2, we have just shown that:

c c1,0 1,0
12= − ∆

c c1,0 0,1
2= −∆

c c0,1 0,1 32= − ∆

What we have just done is to find expressions for each of the elements of the matrix in equation (0.15) In
other words:

1 2

2 3

2

2

∆ ∆ 
− = ∆ ∆ 

c c

One interesting thing about this demonstration is that it shows why there are factors of 2 for the 1∆ and 3∆
entries, but not for the 2∆ . Anyway, the final step is easy. The discriminant of the cubic c equals the
determinant of this matrix (with the appropriate minus sign and scale factor)

c c

c c

1
2∆ = −

(0.16)

You can see this as a nice generalization of the discriminant diagram for the quadratic polynomial.

A 2DH Application: Tangency
Now let’s use this 1DH result to solve a 2DH geometry problem: tangency.

Quadratic with Line
Table 2 gave us the condition of a point being on a quadratic curve. How can we generate an expression
that determines if a line L is tangent to curve Q? Let’s start by assuming that we have two points on L.
(We don’t need to know how we found these two points. In fact, they will disappear shortly.) Then a
general point on the line is

( ),α β α β= +P R S

In matrix notation

[ ]
1 2 3

1 2 3

R R R

S S S
α β

 
=  

 
P
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=P aV

The 2x3 matrix is a sort of conversion from the world of 2D (1DH) vectors (homogeneous polynomials) to
the world of 3D (2DH) vectors (homogeneous curves). If we plug this into the quadratic curve equation we
get a homogeneous polynomial in ( ),α β that evaluates the quadratic function at each point on the line.

The condition of the line being tangent to the curve is the same as the condition that there is a double root
to this polynomial. Let’s write this in diagram form (For these mixed mode diagrams I’ll make thicker
arrows for the 3-element summations and thinner arrows for the 2-element summations)

P = a V

Plug this into the equation for the curve:

=P Q P

Qa V V a

This turns the 3x3 symmetric quadratic curve matrix Q into a 2x2 symmetric quadratic polynomial matrix
q. Just q by itself is

=Q VV q

This polynomial has a double root iff its determinant is zero. Plugging this into the diagram form of the
determinant gives us the condition that the polynomial has a double root, and thus that the line hits the
curve at exactly one point.

=

Q VVq

q Q VV
= 0

(0.17)

Now look at the diagram fragment:

V

V

Write this as a matrix product:

1 1

1 2 3
2 2

1 2 3
3 3

1 2 2 1 1 3 3 1

2 1 1 2 2 3 3 2

3 1 1 3 3 2 2 3

0 1

1 0

0

0

0

R S
R R R

R S
S S S

R S

R S R S R S R S

R S R S R S R S

R S R S R S R S

 
    =    −     

 − −
 − − 
 − − 
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You can recognize the elements of this matrix as the components of the cross product of the two points R
and S. But these are just the elements of the line-vector L arranged into an anti-symmetric matrix. In
diagram form we can show this as

3 2

3 1

2 1

0

0

0

L L

L L

L L

− 
 = − 
 − 

L

We can therefore say that

= L

V

V
(0.18)

Note that the right hand side of this doesn’t require explicit points on L, so if all you have are the L
components you do not need to explicitly find points on L. Putting diagrams (0.17) and (0.18) together we
get that the line L is tangent to curve Q if

Q

Q

= 0L L

(0.19)

This diagram, without the L nodes, is just the expression of the adjoint of the matrix Q from Table 9(c)
(times minus two). In other words, while we use Q to test for point incidence, we use Q* to test for line
incidence (tangency):

Q*L L = 0

( )* 0T =L Q L

Cubic with Line
So, going up an order, what is the condition of line L being tangent a cubic curve C? That is, we want an
expression involving the vector L and the cubic coefficient tensor C that is zero if L is tangent to C. With
the groundwork we’ve laid, this is easy. First, compare diagrams (0.14) and (0.19) to see how we
converted the quadratic discriminant into a quadratic curve tangency equation. We just replaced each 2D
epsilon with a 3D epsilon attached to a copy of L, and replace q with Q. Now do the same thing with the
discriminant of a cubic polynomial (0.16). We get
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CC

L

LL

L

CC

L L = 0

This diagram represents a polynomial expression that is 4th order in C and 6th order in L. Since it has 18
arcs, the EIN version of this would require 18 index letters. All in all, it is something that would be rather
difficult to arrive at in any other, non-diagram, way.

Notation, Notation, Notation
A lot of the notational language of mathematical consists of the art of creative abbreviation. For example, a
vector-matrix product PT is an abbreviation for a lot of similar looking algebraic expressions. However,
clunky expressions like Table 3(b) showed that this notation is not powerful enough to allow us to easily
manipulate the sort of expressions that we are encountering here. Einstein index notation has this power,
but often gets buried under an avalanche of index letters. The tensor diagram method of drawing EIN is a
better way to handle the index bookkeeping. What I’ve shown here is only the tip of the iceberg. There are
a lot of other things that diagram notation can do well that I will cover in future columns.

Our languages help form how we think. I believe that this notation can help us think about these and
similar problems and allow us to come up with solutions that we wouldn’t find any other way.

References
[1] [http://mathworld.wolfram.com/D/DiscriminantPolynomial.html]

[http://www.britannica.com/seo/d/discriminant/]

[2] Wee, C. and Goldman, R, Elimination and Resultants Part 1, IEEE CG&A January 1995
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2D(1DH) Tensor Diagrams
Now let’s go back and fill in some details about 2D(1DH) diagrams. “Homogeneous” here means that we
have 2D constructs (two element things) interpreted as 1D Homogeneous constructs (polynomials
including parameter-at-infinity). In other words this chapter describes homogeneous polynomials.

The elements:
Item Matrix Notation Diagram Notation

Homogeneous
parameter

[ ]x w
P

Linear
coefficients

A

B
 
 
 

L

Linear polynomial
[ ] A

Ax Bw x w
B
 + =  
 

P L

Transformation of
parameter [ ] [ ]' '

a b
x w x w

c d
  = 
 

P T

Quadratic
polynomial [ ]2 22

A B x
Ax Bxw Cw x w

B C w
   + + =    
   

P Q P

Cubic polynomial

[ ]

3 2 2 33 3Ax Bx w Cxw Dw

A B B C x x
x w

B C C D w w

+ + +

        =         
        

P

P

C

P

Quartic
polynomials

[ ] [ ]

4 3 2 2 3 44 6 4Ax Bx w Cx w Dxw Ew

A B B C

B C C D x x
x w x w

w wB C C D

C D D E

+ + + + =

     
                                       

P

P

P

P

F

Derivatives
Since we are dealing with polynomials, let’s do some polynomial stuff, like derivatives.

For a quadratic we have
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( ) [ ]

( ) [ ]

( ) [ ]

2 2, 2

, 2 2 2 0

, 2 2 0 2

A B x
f x w Ax Bxw Cw x w

B C w

A B x
f x w Ax Bw

B C wx

A B x
f x w Bx Cw

B C ww

   = + + =    
   

   ∂ = + =    ∂    
   ∂ = + =    ∂    

The two components of the first derivative can best be written as a vector. From the above we can see that

[ , ]

[ , ]

2 2
2

2 2

x x w

w x w

f Ax Bw A B x

Bx Cw B C wf

  +     = =       +        

In other words, a parametric value [x,w] the vector containing the first derivatives of Q is simply

x,w Q2

In a similar manner, the vector containing the first derivatives of the cubic polynomial represented by the
coefficient matrix C above, evaluated at the parametric value [x,w] will be:

( )

( )

( )

3 2 2 3

2 2

2 2

, 3 3

, 3 6 3

, 3 6 3

f x w Ax Bx w Cxw Dw

f x w Ax Bxw Cw
dx

f x w Bx Cxw Dw
dw

= + + +
∂ = + +

∂ = + +

[ ]

[ ]

2 2
[ , ]

2 2
[ , ]

3 6 3
3

3 6 3

x x w

w x w

A B x
x w

f B C wAx Bxw Cw
B C xf Bx Cxw Dw

x w
C D w

    
           + +  = =        + +         
     

We can write this more elegantly simply as the diagram:

x,w

C

x,w

3

The second derivative of C form a 2x2 matrix:
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6 6 6 6

6 6 6 6

6

6

xx xw

xw ww

f f Ax Bw Bx Cw

f f Bx Cw Cx Dw

Ax Bw Bx Cw

Bx Cw Cx Dw

A B B C x

B C C D w

+ +   
=   + +  

+ + 
=  + + 

      =       
      

Again, the diagram is simply

x,w C6

The epsilon

Definition

12

21

1

1

0ij otherwise

ε
ε
ε

=
= −
=

As matrix

0 1

1 0
ε  =  − 

As diagram

i j

Symmetry

Be careful of signs and implied transposes when going back and forth to conventional vector/matrix
products.

11 121 2

21 22

1 2

2 1

0 1

1 0

i
ijA

A A

A A

A A

ε ε
ε ε
ε ε

=

 
 =   

 
  =    − 

 = − 

A
1

11 12

2
21 22

1

2

2

1

0 1

1 0

T j
ij A

A

A

A

A

A

A

ε ε

ε ε
ε ε

=

  
=   
   

  =   −   
 

=  − 

A
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Note the asymmetry in the diagram. Geometric reflections flip the sign. We adopt the convention that when
the diagram points down (as above) the first index is on the left. Then the EIN relations

i j j i j i
ij ij jiA B B A B Aε ε ε= = −

( )1 2 2 1 2 1 1 2 1 2 2 1A B A B B A B A B A B A− = − = − −

Translate into the diagram (first equality represents a rotation, second has a reflection).

i j

A B
ij

AB
ij

AB= = −

There exists both covariant and contravariant forms (arrows in / arrows out)

An Identity

Two epsilons in sequence is identity

i j k ijε kjε ij i
kj kε ε δ=

1 2 1 +1 +1 1

2 1 2 -1 -1 1

ij i
kj kε ε δ=

zig-zag identity:

=ji
k

i k

Cup identity:

=

j

i k i k
-1

Uses of epsilon

Homogeneous equality of two parameter values

In various notations we have:

[ ]

1 2

1 2

1 2 1 2

2
1 1

2

0

0 1
0

1 0

x x

w w

x w w x

x
x w

w

=

− =

   =  −   
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P1 P2
= 0

This gives the identity

P P
= 0

Where P can be two identical copies of any complicated glop. This will be useful for complex diagram
simplifications.

In conventional notation I will use the symbol to represent “homogeneous equality”. That is

1 2 1 2 , for some 0w w⇔ = ≠P P P P

Solution to Linear Equation

The simplest polynomial, the linear, has the equation

[ ] 0
A

Ax Bw x w
B

 + = = 
 

with the diagram:

P L

Given the column vector L, the solution P can be written:

P = L

This just means that

[ ] [ ]x w B A= −

solves the equation. The proof is simple, plugging P into L gives us

P = LL L = 0

This seems simple, but we will actually use it a lot.

Another identity

For a symmetric matrix Q
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( ) 0 1

1 0

0

A B
trace trace

B C

B A
trace

C B

ε
    =     −    

−  =   −  
=

Q

= 0
Q

Any vector times a cubic polynomial tensor yields a symmetric matrix

A B B C x Ax Bw Bx Cw

B C C D w Bx Cw Cx Dw

+ +        =        + +        
so we have

= [0,0]C

What is symmetrical?

NO
Q Q

YES

C C

Why? Mirroring the first diagram flips one epsilon, sign change. Mirroring the second diagram flips two
epsilons, two sign changes. It’s best, when thinking about symmetry to think of each dangling arc as
having a unique dummy vector plugged in to it.

Q Q ba

Another point about symmetry. In 3D diagrams the anti-symmetry of the (three input) epsilon is accurately
represented by mirror operations in the 2D space of the diagram. In 4D diagrams we have mirror
operations in the 3D space of the diagrams. In 2D diagrams we are discussing here, we could theoretically
draw them all in a 1D space. Then the (1D) mirroring would mean a sign flip. We chose to us the more
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general 2D space for diagrams that requires us to add an asymmetry to the diagram so that 2D mirror
operations work properly to represent sign flips. We might also chose to draw 3D diagrams in 3D space,
but we would need to make the (three input) epsilon asymmetrical in 3D space by, for example, dishing it
in like an ammonia molecule.

Anyway, since the diagram of the two joined cubics is symmetrical we have another identity:

C C = 0

Adjoint of matrix

*
a b d b

c d c a

−   =   −   
We can write this as

0 1 0 1 0 1

1 0 1 0 1 0

a b c d d c

c d a b b a

− − − −           = =           − − −           
Einstein index notation

( )* jjk i
k li l

ε ε =T T

To make sure the indices are arranged correctly, we look at a specific element:

( ) 11, 2 2 *
2 1, 2 1

jj k i
k l i l

ε ε
== = =

= = = =
=T T

Diagram notation

T
i l

kj

Determinant of matrix

Here are various ways of writing the same identities. These all apply to both transformation matrices
(mixed tensors) as well as to symmetric matrices (second order polynomials)

Two transforms applied to an epsilon gives epsilon times determinant. This is the fundamental identity that
we use to show transformation invariant properties of various expressions.

=

detT

T T

Now multiply both sides on the left an epsilon.
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=
detT

T T detT= −

The leftmost diagram above is just T times minus the adjoint of T (since one of the epsilons is flipped wrt
the adjoint diagram). The above equation is just the diagram way of saying that “Adjoint times matrix =
identity times determinant”

Now connect the dangling ends to form the trace of this. This gives the scalar (-2* determinant) (because
trace of identity=2)

T

T

= −detT = −2 detT

The 1D(2DH) Epsilon-Delta Rule

Version 1
Here it is:

ij kl ik jl il jkε ε ε ε ε ε= −

To see this most explicitly, look at table of values. Each index has two possible values (1 and 2) and there
are four indices, so there are 16 possible table entries. Most of these will be zero. The following table
shows only the nonzero values.

i j k l
ij klε ε ik jlε ε il jkε ε

1 2 1 2 +1*+1=+1 0* 0 +1*-1=-1

1 2 2 1 +1*-1=-1 +1*-1=-1 0* 0

2 1 1 2 -1*+1=-1 -1*+1=-1 0* 0

2 1 2 1 -1*-1=+1 0* 0 -1*+1=-1

1 1 2 2 0* 0 +1*+1=+1 +1*+1=+1

2 2 1 1 0* 0 -1*-1=-1 -1*-1=-1

You can see that column 5 equals column 6 minus column 7 of the table.

Expressing this in various diagram forms we get

= -
k lji

k lji k lji
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= -
j k

li

j k

li

j k

li

= +
j k

li

j k

li

j k

li

We can see this as an expression of a standard algebra trick, adding and subtracting a fortuitous term to
enable factoring:

( )

( ) ( )

E BC AD CEB ADE

CEB ADE ACF ACF

C EB AF A ED CF

− = −
= − + −
= − − −

in diagram terms this looks like

= +

A,B

C,D 1,0

E,F A,B E,F

1,0C,D

A,B E,F

1,0C,D

Version 2
Another variant derived from multiplying the above by two epsilons

= +

Apply some zigzag and cup identities;

= −

Rearrange to get something that looks a lot like the original 3D epsilon delta identity.



2D(1DH) Tensor Diagrams

James F. Blinn

70

= −

The Game Plan
Application of the epsilon-delta identity is useful for factoring polynomials.

Given some complicated diagram (representing a polynomial), we can often factor it by picking two
epsilons and applying the epsilon*epsilon identity. This gives the difference of two modified diagrams. We
will typically find that one of several things happens:

1. One of the diagrams on the right hand side is identically zero. (This is the motivation for
amassing a catalog of diagram identities that equal zero). The remaining diagram has fallen into

two disjoint pieces, the factors. 1 2 30D d d= +

2. One of the diagrams is minus the original diagram 1 1 2D D D= − + . In other words 1
1 22D D= .

The second D2 might be also in two disjoint pieces.
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2D(1DH) Tensor Identity Catalog
James F. Blinn

Microsoft Research

Last Saved: 0/0/0000 0:00 AM

Chains of Epsilon

=ji
k

i k

=

j

i k i k
-1

Epsilon applied to symmetric tensors

P P
= 0

= 0
Q

= [0,0]C

C C = 0
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See last section for a proof of the following

C

C

C

= 0

Determinants
There are all permutations of covariant and contravariant forms of the following. I will just show
representative examples:

=

detT

T T

=T T
detT

T

T

= −2 detT

Combining these last two (and, for variety, showing it in pure covariant form)

=QQ

-1/2 Q

Q



2D(1DH) Tensor Identity Catalog

James F. Blinn

73

Epsilon Delta Rule

= +
j k

li

j k

li

j k

li

= −

We now derive another variation. Start with

A B

Cp

Insert a zig,zag

A B

Cp

Apply epsilon/delta

A B

C

A B

C
-

p p

Straighten out the dish arcs

A B

C

A
B

C

+-

p p

Net identity
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−=

A B

Cp

B

C

A

p

B

C

A

p

Proof of Ring of 3 Cubics Identity
Given the symmetric tensor C defining a homogeneous cubic polynomial

[ ]

[ ]

3 2 2 33 3Ax Bx w Cxw Dw

A B B C x x
x w

B C C D w w

x x
x w

w w

+ + +

        
=         

        
   =    
   

C

The proposed identity is

C

C

C

= 0

We have three identical copies of C, but independent of whatever glop is attached to the three free arcs.

Brute Force
Divide the diagram into three identical sections. Plug a placeholder point into each section. Then each
section of this looks like a symmetric matrix times an epsilon

C

P1

Name the elements of the 2x2 matrix formed from just the product P1C as A1…C1. Then algebraically the
diagram above evaluates to:
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1 1 1 1

1 1 1 1

0 1

1 0

A B B A

B C C B

−    
=     −−    

The whole ring is the trace of the three products

3 31 1 2 2

3 31 1 2 2

3 31 2 1 2 1 2 1 2

3 31 2 1 2 1 2 1 2

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

B AB A B A
trace

C BC B C B

B AB B AC B A A B
trace

C BC B B C C A B B

B B B AC B B A C A B C B B A AC A B A B A B B
trace

C B B B C B B B C

−− −     
=     −− −     

−− − +   
=   −− − +   

− + + − − − +
− + − 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1 1

2 2det

C A C C B A B C A C A B B B B

B B B AC B B A C A B C C B A B C A C A B B B B

A C B B A C A B C C B A B C A C A B

A C B B A C C B A A B C B C A C A B

A B C

A B C

 
 + − − + 

= − + + − + − − +
= + + − + − −
= + + + − − −

= − 2

3 3 3A B C

 
 
 
  

Now for the definitions of the matrix elements

[ ] [ ] [ ]

1 1 1

1 1 1

1 1 1

1 1 1 1 2

A Ax Bw

B Bx Cw

C Cx Dw

A B C x A B C x B C D

= +
= +
= +

= +

[ ] [ ]
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

A B C x w

A B C x A B C w B C D

A B C x w

     
     = +     
          

The determinant of this is manifestly zero (show this using general calculation for determinant of sum of
matrices…)

This shows an interesting relationship between the 2x2 matrix and the 3 element vector of ABC.

More Elegant
Name the two slices (watch out for overloading of the letter C, italic C is one of the elements of tensor C)
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1

A B

B C

 
=  
 

C C1,0

2

B C

C D

 
=  
 

C C0,1

The big diagram is another cubic with elements extracted by multiplying various input arcs by various basis
vectors. I’ll put hats over the names of the elements.

Â
C

C

C
1,0 1,0

1,0

C1

C1

C1

B̂
C

C

C
1,0 1,0

0,1

C1

C2

C1

Ĉ
C

C

C
1,0 0,1

0,1

C2

C2

C1

D̂
C

C

C
0,1 0,1

0,1

C2

C2

C2

We can see that each of these components is identically zero because each diagram is of the form
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B

A

A B
=

det A

Summary
So we have the identity:

C

C

C

= 0

This is significant because it doesn’t matter what kind of glop is attached to the free arcs (indices). In any
complicated diagram, if there is a cycle of three C’s connected with epsilons in it somewhere, the whole
diagram is identically zero.

Proposition: A similar ring of any odd number of identical nodes is zero. (I believe this is true, but don’t
have a complete proof.)
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2D(1DH) Transformations

A 2x2 transformation matrix changes 1DH points (i.e. homogeneous parameter values) to other 1DH
points.

[ ] [ ]ˆ ˆ
a c

x w x w
b d

  = 
 

Let’s investigate some ways of looking at this. Many of these results may seem trivial, but they will turn
out to be useful, and their generalization to higher dimensionality is aided by thoroughly understanding
these simple cases. This investigation will also serve to introduce some important general techniques in
diagram manipulation.

SubAtomic Physics
The diagram notation for a transformation matrix is simply

T

Let’s take a look inside the circle and see what its “internal structure” can be.

Sum of Matrices
One possible internal structure is if T is the sum of two other matrices A and B

= +T A B

The straightforward diagram for this would be

T = +A B

Now whenever this is used, whatever plugs into the left of T must plug into the left of both A and B.
Likewise, whatever plugs into the right of T must plug into the right of both A and B. To emphasize this it
might also be instructive to think of the structure as:

T = +

A

B

But for the sake of visual simplicity I will often compromise on



2D(1DH) Transformations

James F. Blinn

79

= +T

A

B

And we will rely on the geometric positioning of the input and output arcs to keep track so that the input to
the left side of T is also applied to the left sides of each of the terms of T. This is easy for this case partly
because T is a mixed tensor so that its inputs and outputs are distinguished by inward and outward pointing
arcs. We have to be a bit more careful in more complicated cases involving pure covariant or pure
contravariant tensors.

As an illustration of the use of this, let’s see what the determinant of T is. We have from our definition of
epsilon:

=detT

-1/2 T

T

Notice that I’ve put scalar factors into a node with no outgoing arcs. This is a reasonable metaphor for a
scalar. Taking this diagram and plugging in the internal structure of T gives us:

=

+

A

B

+

A

B

detT

-1/2

This is a configuration we will see very often in later sections. What we are going to do next is to distribute
the multiplication by the epsilons over the addition of the two internal terms of T. Leaving aside the
common factor of -½ for a moment we can see that the result will be the sum of the four terms found by
taking each combination of one-of-two from the top copy of T and one-of-two from the bottom copy of T.

+

+ +

A

A

A

B

B

A

B

B
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The second and third terms of this are equal (a mirror reflection can take one to the other, and there are an
even number of epsilons, thus an even number of sign flips) so we have the final formula:

=detT +
A

A

-1/2
A

B

-1 B

B

-1/2

+

In more conventional notation

( ) ( )det det , detfcn+ = + +A B A A B B

Where fcn is the “cross-determinant” of A and B indicated by the middle diagram term above.

Outer product
Another way to generate a matrix is as the “outer product” of two vectors, here a covariant and a
contravariant vector. Matrix notation is

[ ]a ax aw
x w

b bx bw

   =   
   

=L P T

The diagram notation for this would be:

TL P =

This shows that all the nodes in a diagram need not be connected into one mesh; two disjoint diagram
fragments represents the product of the two fragments.

A matrix formed in this way will be singular. We can see this by taking the determinant. Doing this with
vector/matrix notation basically requires us to explicitly evaluate the value

det 0
ax aw

axbw bxaw
bx bw

  = − = 
 

Doing it with diagrams is better. Plugging in the internal structure of T

=detT

T

T

L

L
=

P

P

-1/2-1/2

So the determinant of T is the product of two diagrams, each of which is zero since they each have identical
things on both sides of an epsilon. It’s not only zero, its zero squared.

Sum of Outer Products
In order to make a nonsingular matrix we need the sum of more than one LP outer product. Let’s try

1 1 2 2= +T L P L P
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Representing this internal structure as a diagram gives us

T = +

L1 P1

L2 P2

Now what is the determinant of our new matrix T? I will do this explicitly one last time. Plug the new
diagram into the 2-epsilon representation of the determinant and get

+

L1 P1

L2 P2

+

L1 P1

L2 P2
=detT

-1/2

Expanding out the terms we get -1/2 times these four terms:

+

+ +

L1 P1

L1 P1

L2 P2

L1 P1

L2 P2

L2 P2

L1 P1

L2 P2

Two of these terms are zero (squared) and the other two are equal (with two sign flips to get the epsilons
into the same configuration). Using this “2” to cancel the factor of ½ we get:

= −detT

L1 P1

L2 P2

So, in order for the matrix T to be nonsingular we just require that L1 be distinct from L2 and that P1 be
distinct from P2.
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Constructing a desired matrix
Given a desired matrix there are any number of ways of decomposing it into the sum of two outer products.
The simplest along with their diagram form are:

[ ] [ ]1 0

0 1

a c
a c b d

b d

     = +     
     

Equation(asdf)

+

1
0

a,c

0
1

b,d

[ ] [ ]1 0 0 1
a c a c

b d b d

     = +     
     

+

a
b 1,0

c
d 0,1

This may seem particularly trivial, but it does show that we only need to sum two outer products to
construct any matrix. The formulas will actually be useful in some situations where we have calculated
some complicated diagram form for the two points (rows) or the two (1DH) “lines” (columns). That is, it
allows us to “glue” two rows or two columns together into a matrix.

In fact, for any given matrix T and for any two given distinct lines L1 and L2 it is possible to find P1 and P2

that satisfy 1 1 2 2= +T L P L P . First multiply T by the single “point” that is the solution to L1 . In
conventional matrix notation this looks like:

( ) ( )
( )

1 1 1 1 1 2 2

1 2 2

ε ε ε
ε

= +

=

L T L L P L L P

L L P

In diagram notation this looks like:

= +TL1

L1 P1L1

L2 P2L1

= L2 P2L1

In other words T transforms the root of L1 into (a homogeneous factor times) P2. In a similar manner we
have:

= L1 P1L2TL2

Notice that the homogeneous scale factor of 1 2εL L appears reversed (minus) in this equation. If we toss

out this (nonzero) homogeneous scale factor we can say that
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= TL1P2

= L2
P1 T

Notice that I’ve expressed the minus sign in the definition of P1 as a flip of the epsilon.

We can now address several matrix construction problems in these terms:

Eigenvectors/values
The eigenvectors of matrix T are the vectors that remain unchanged homogeneously (except for a nonzero
homogeneous scale λ.

λ=TL L

An alternative form is to look at the “point” type vectors that remain unchanged

λ=PT P

Eigenvalue calculation

We calculate the eigenvalues of a matrix by solving the characteristic equation

( )det 0λ− =T I

In the 2x2 case this will give a quadratic equation in λ . Our diagram notation for the determinant of a sum
of matrices and a little imagination on distribution of scalar factors gives the characteristic equation as:
(note two minuses making a plus in the middle term.)

+ λ+ λ+ λ+ λ
T

I

T

T

I

I

+ λ+ λ+ λ+ λ2

-1/2-1/2

The three diagrams represent, respectively, the determinant of T, minus the trace of T, and the constant 1.
These are all invariants under Euclidean transformations of T and I so the characteristic equation and its
roots are Euclidean invariants of the matrix T. (expand on this). The solution can give two distinct real
eigenvalues, one real double eigenvalue, or zero real eigenvalues.

Construction from Eigenvectors

Suppose we want to construct a matrix from two given eigenvectors L1 and L2 and two given eigenvalues

1 2,λ λ . This is basically the problem we had above where we want to find P1 and P2 in

1 1 2 2= +T L P L P

Such that

( )
( )

1 1 1 2 2 1 1 1

2 1 1 2 2 2 2 2

λ
λ

= + =

= + =

TL L P L P L L

TL L P L P L L
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In a manner similar to the previous matrix construction problem, we make P2 be some homogeneous scalar
times the root of L1 , and make P1 be a homogeneous scalar times the root of L2. This means that

2 1 0⋅ =P L and the first equation above turns into:

( )1 1 1 1 1 2 1 1 1w ε λ= =L P L L L L L

Which, in diagram form looks like

=
L1

L2

P1

P2

+ L1

λ1

L1

L1

L2

+
L2w1

L1w2

L1
=

= L1 L2w1 L1

so we simply pick 1w and (with a similar derivation) 2w to be:

=w1

λ1

L2 L1

=w2

λ2

L1 L2

The final T in all its glory is:

=

T

L2 L1

1

λ1L1

L2

−
L2

L1λ2
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Sometimes we don’t care about the exact value of the eigenvalues. We just want a matrix with two given
eigenvectors. Here we can just use:

=T +
L2 L1

L1 L2

Exemplary Transformations
In non-homogeneous terms the 1DH transformation is

ˆˆ
ˆ
x ax bw aX b

X
w cx dw cX d

+ += = =
+ +

Suppose we want to specify the transformation so that matches a collection of given input/output pairs.

That is, we are given a bunch of ˆ,i iX X and we want to find a,b,c,d such that

ˆ i
i

i

aX b
X

cX d

+=
+

way 1 Brute Force

Each input/output pair generates a linear equation in a,b,c,d

ˆ 0i i iaX b cX X d+ − − =

Each such equation gives us a row in the matrix version:

0 0 0 0

1 1 1 1

2 2 2 2

ˆ ˆ1

ˆ ˆ1 0

ˆ ˆ1

aX X X X
b

X X X X
c

X X X X
d

  − −     − − =    − −      
The solution for a,b,c,d looks algebraically like the problem of finding the 3DH plane on three 3DH points.
The answer is

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 2 2 2 2 2 2

ˆ ˆ ˆ1 1

ˆ ˆ ˆdet 1 , det 1

ˆ ˆ ˆ1 1

ˆ ˆ ˆ1

ˆ ˆ ˆdet , det 1

ˆ ˆ ˆ1

X X X X X

a X X X c X X

X X X X X

X X X X X X X

b X X X X d X X X

X X X X X X X

   − − −
   

= − − = −   
   − − −      
   − − −
   

= − − − = −   
   − − −      

Way 2: Intermediate matrix

Before pursuing this, let’s first change our outlook to do the whole thing homogeneously. We would like

to find the matrix that transforms three given input points [ ]i ix w to three given output points [ ]ˆ ˆi ix w
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[ ] [ ]ˆ ˆi i i i

a c
x w x w

b d

  = 
 

It turns out that we cannot do exactly that. What we can do is to find three output points that are
homogeneously equivalent to the desired points. That is we will get

[ ] [ ]ˆ ˆ ˆi i i i i

a c
x w s x w

b d

  = 
 

The exact values of the îs will be dictated by the input/output values and their evaluation will be an

automatic side effect of finding the transformation matrix. Now let’s proceed to find the matrix in a new
way.

We will solve for the transformation in two stages. The first transforms the inputs to the three canonical

points [ ] [ ] [ ]1 0 , 0 1 , 1 1 and the second transforms these points to the three desired outputs. We’ll

do the second one first. We want to find the matrix that transforms:

0 0 0 0
2 2

1 1 1 1
2 2

2 2 2 2

ˆ ˆ ˆ ˆ1 0

ˆ ˆ ˆ ˆ0 1

ˆ ˆ ˆ ˆ1 1

s x s w
a c

s x s w
b d

s x s w

   
    =           

Taking the first two rows gets:

2 2 0 0 0 0 0 0 0

2 2 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0

a c s x s w s x w

b d s x s w s x w

       = =       
       

So we just need to find 0 1ˆ ˆ,s s . We do this by looking at the third row of above:

[ ] [ ] [ ]2 2
2 2 2 2 2 2 2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1
a c

s x s w s x w
b d

  = = 
 

Plug in our solution for a2…d2

[ ] [ ]0 0 0
2 2 2

1 1 1

ˆ ˆ ˆ0
ˆ ˆ ˆ1 1

ˆ ˆ ˆ0

s x w
s x w

s x w

    =   
   

Solve this homogeneously by multiplying on the right by the adjoint the xw matrix

[ ] [ ]
* *

0 0 0 0 0 0
0 1 2 2 2

1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

x w x w x w
s s s x w

x w x w x w

     =     
     

This evaluates to

[ ] ( ) [ ]

[ ]

1 0
0 1 0 1 0 1 2 2 2

1 0

2 2 1 2 1 0 2 0 2

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

w w
s s x w w x s x w

x x

s x w w x x w w x

− − =  − 
= − −

This all homogeneously makes sense if we pick:
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0 2 1 2 1

1 0 2 0 2

2 0 1 0 1

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

s x w w x

s x w w x

s x w w x

= −
= −
= −

The final second/half transformation is then

2 1 2 12 2 0 0
2

0 2 0 22 2 1 1

0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2

ˆ ˆ ˆ ˆ ˆ ˆ0

ˆ ˆ ˆ ˆ ˆ ˆ0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x w w xa c x w

x w w xb d x w

x w x x x w w w x w x w

x x w w x x x w w w w x

−    = =     −    
− − =  − − 

T

Now we need the other half, we want:

0 0 0 0 0
1 1

1 1 1 1 1 1
1 1

2 2 2 2 2 2

0

0

x w x w s
a c

x w x w s
b d

x w x w s s

     
      = =                 

T

Again we can generate the transform only up to the nonzero scalars 0 1 2, ,s s s . It should come as no

surprise to find that the desired matrix is just the adjoint of the form we got for T2 if we were to replace the
output points with the input points. So

*

2 1 2 1 0 0
1

0 2 0 2 1 1

**

2 1 2 10 0

0 2 0 21 1

1 0 0 2 0 2

1 0 2 1 2 1

0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2

0

0

0

0

0

0

x w w x x w

x w w x x w

x w w xx w

x w w xx w

w w x w w x

x x x w w x

x w w w w x w x w w w x

w x x x x w x w x x x w

−    =     −    

−  =    −   
− −   =    − −  

− − =  − − 

T

The final matrix is the product of T1 and T2. I will explicitly calculate at least one of the entries of this to
show something important. The 1,1 element of T will be:
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[ ] ( ) ( )
( ) ( )

0 1 2 0 1 2 0 1 2 0 1 21,1

0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

x w w w w x x w x x x w

w x w w w x x x w w x x

x w w x w x w w x x w x x w w x x w w w x x x w

w x w x x w w w x x x w w x w w x x w w x w x x

x

= − −

+ − −
= − − +
+ − − +
=

T

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( )

0 0 1 1 2 2

0 0 1 1 2 2

0 0 1 1 2 2 0 0 1 1 2 2

0 0 1 1 2 2

0 0 1 1 2 2

0 0 1 1 2 2

0 0 1 1 2 2

0 0 2 2 1 1 0 0 1 1 2 2

2 2 1 1 0 0 1 1 2 2 0 0

1 1 0

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

x w w w x

w w w x x x

w x w x x w w x w x x w

w x x x w w

w w x x w x

w x w w x x

x x w x w w

x x w x w w x x w x w w

x x w x w w x x w x w w

x x w x

+
+ −
+
−
−
−
= −

+ −

+ ( ) ( ) ( ) ( ) ( )0 2 2 2 2 0 0 1 1ˆ ˆ ˆ ˆw w x x w x w w−

In other words, the value of T11 (and the other elements as well) is unchanged if we permute the points P0

P1 P2. We can also see that this is just the homogeneous version of the equation for the a element above
(with a change of sign that doesn’t matter homogeneously)

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆdet

ˆ ˆ ˆ

w w x x w x

a w w x x w x

w w x x w x

− − 
 = − − 

− −  

Calculationally, its probably best to form the matrices T1 and T2 and multiply them. But the permutation of

points can give us some tools to improve things numerically. By comparing the values for the ˆ,i is s a

choice can be made of which two of the three input/output pairs to pick for P0 and P1 for best numerical
stability.

Way3: Diagrams

Let’s see how this last technique looks when translated into tensor diagrams. We start with the second
transformation

2 1 2 1 0 0
2

0 2 0 2 1 1

ˆ ˆ ˆ ˆ ˆ ˆ0

ˆ ˆ ˆ ˆ ˆ ˆ0

x w w x x w

x w w x x w

−   =    −   
T

We first write it in the format of equation (asdf):

( ) [ ] ( ) [ ]2 2 1 2 1 0 0 0 2 0 2 1 1

1 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

0 1
x w w x x w x w w x x w

   = − + −   
   

T

the translateion into diagrams is then straightforward:



2D(1DH) Transformations

James F. Blinn

89

P2
^ P1

^

1
0 P0

^

+T2
=

P0
^ P2

^

0
1 P1

^

Next, the first transformation T1 is

*

2 1 2 1 0 0
1

0 2 0 2 1 1

0

0

x w w x x w

x w w x x w

−    =     −    
T

This is just the adjoint of the T2 expression but without the hats over the Ps.

+T1 =

P2 P1

1
0 P0

P0 P2

0
1 P1

Notice that the adjoint operation has reversed the left/right order of inputs/outputs to T1. In order to plug
T1 into T2 it will be easier to rearrange it like:

+T1 =

P2 P1

1
0P0

P0 P2

0
1P1

Now the product of T1 and T2 will have four terms, the permutations of two from T1 and two from T2. But
if you look at the “interface” between the two, we see the basis vectors (1,0) and (0,1) in combinations that
will make two of the four terms zero. The remaining two terms then gives us:
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+=

P2 P1

1
0P0

P0
^ P2

^

0
1 P1

^

P0 P2

0
1P1

P2
^ P1

^

1
0 P0

^

T1 T2

The basis vector expression in the top terms evaluates to +1 and the one in the bottom term evaluates to -1
so we have the final exemplary transformation as:

−=T

P0 P2 P2
^ P1

^

P0
^

P1

P2 P1
P0
^ P2

^

P1
^

P0

(Check this)
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2D(1DH) Roots of A Quadratic

The Problem
This chapter deals with solving homogeneous quadratic equations. We want to find the (two) [ ]x w
pairs that satisfy

[ ]2 22 0
A B x

Ax Bxw Cw x w
B C w

   + + = =   
   

Conventional solution
The solution we all learned in high school is the quadratic equation. This applies to the non-homogeneous
equation

2 2 0AX BX C+ + =
Note that I have built a constant of 2 into the B factor; this will make some later calculations easier. The
quadratic equation gives us:

2

2

2 4 4
2

B B AC
X

A

B B AC

A

− ± −=

− ± −=

There are two problems with this:

1) There is a numerical problem if 2AC B . In this case, the value of the square root is nearly
equal to B and calculating one of the two roots requires subtraction of two nearly equal values.

2) The formulation is not homogeneous. That is, its form is not nicely symmetrical with respect to A
and C like the original polynomial expression was. In particular it has problems when 0A = , a
perfectly reasonable occurrence with homogeneous quadratic polynomials.

We need to reformulate the solution to solve these problems. Fortunately, the same approach solves both
problems.

Homogeneous solution
We start out by applying the quadratic equation to the homogeneous form. There are two ways to do this.

First solve for x in terms of w

2 2 2

2

2 4 4
2

Bw B w ACw
x

A

B B AC
w

A

− ± −=

− ± −=

We can write the two roots homogeneously as:
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[ ]

[ ]

2
1 1

2
2 2

a a

a a

x w B B AC A

x w B B AC A

 = − + − 
 = − − − 

Next solve for w in terms of x

2 2 2

2

2 4 4
2

Bx B x ACx
w

C

B B AC
x

C

− ± −=

− ± −=

write these two solutions homogeneously as:

[ ]

[ ]

2
1 1

2
2 2

b b

b b

x w C B B AC

x w C B B AC

 = − + − 
 = − − − 

How do these two formulations relate?

They both (homogeneously) give the same two answers. For example we can see that [ ]1 1a ax w is

homogeneously equal to [ ]2 2b bx w by multiplying them through an epsilon:

[ ]

( )( )

2
1 1

2

2

2

2 2 2

2

0 1

1 0

0 1

1 0

0

b
a a

b

x
x w

w

C
B B AC A

B B AC

C
A B B AC AC B B AC

B B AC

   =  −   
   − + − =    − − − −    

  − − + − = − + − −   − − −  
=

Just to beat this to death, we can multiply [ ]1 1a ax w by the constant ( )2B B AC− − − and get

[ ]2 2b bx w . Recall that I am using to mean “is homogeneously equal to”:

( )
( )

2

2 2

2

2 2

B B AC A

B B AC B B AC A

AC A B B AC

A C B B AC C B B AC

 − + − 
 − − − − + − = 

 − − − =  
   − − − − − −   
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And we can multiply [ ]2 2a ax w by a constant and get (homogeneously) [ ]1 1b bx w

( )
( )

2

2 2

2

2 2

B B AC A

B B AC B B AC A

AC A B B AC

A C B B AC C B B AC

 − − − 
 − + − − − − = 

 − + − =  
   − + − − + −   

I went to all this effort to match up the roots properly because our final solution will take one root from
each of the pairs above. In order to make sure we get the proper two roots we needed to realize which
paired with which. We have

Root1 2 2B B AC A C B B AC   − + − − − −   

Root2 2 2B B AC A C B B AC   − − − − + −   

This means that we can avoid subtracting something nearly equal to B ffom B by taking the choice where
the sign of the square root matches the sign of –B.

An algorithm for picking which root formulation

0B ≥
[ ]

[ ]

2
1 1

2
2 2

x w C B B AC

x w B B AC A

 = − − − 
 = − − − 

0B ≤
[ ]

[ ]

2
1 1

2
2 2

x w B B AC A

x w C B B AC

 = − + − 
 = − + − 

Note that in each case we only have to evaluate a quantity like 2B B AC− + − once. That same value
appears in both of the two solutions. This algorithm only has us adding two positive numbers or adding
two negative numbers. It is numerically sound, but it’s also aesthetically pleasing since A and C appears
symmetrically in the solution pairs. Note also that I was careful to make the first root for 0B ≥
correspond with the first root for 0B ≤ . This might be important in cases where you were continually
evaluating the roots while B varied.

This formulation is also more stable to odd inputs. For example, if A=0 the conventional solution screws
up. It gives us

[ ]

[ ]

2
1 1

2
2 2

0

0

a a

a a

x w B B AC A B B

x w B B AC A B B

 = − + − = − +   
 = − − − = − −   
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Depending on the sign of B one of these is the nonsensical root [0 0]. What should happen? In the non-
homogeneous case, A=0 means that we don’t really have a quadratic. In the homogeneous case, though,

this is a perfectly respectable quadratic polynomial; it simply has one of its roots at [ ]1 0 , that is, where

X x w= = ∞ . When A=0 our homogeneous solution gives

0B ≥
[ ] [ ]
[ ] [ ]

1 1

2 2

2

0 2 0

x w C B B C B

x w B B B

=  − −  = − 
= − −  = − 

0B ≤
[ ] [ ]
[ ] [ ]

1 1

2 2

0 2 0

2

x w B B B

x w C B B C B

= − + = −  
= − + = −  

This still has problems, though, if A=B=0. This, again, is a perfectly reasonable occurrence. Let’s look at
all such problem cases

Various potential problem cases:

B=A=0

The equation is:

2 0Cw =

The correct solution is a double root at 0w = , that is [ ] [ ] [ ]1 0 , 1 0x w . Instead, the above

machinery gives us one of:

0B ≥
[ ] [ ]
[ ] [ ]

1 1

2 2

0

0 0

x w C

x w

=

=

0B ≤
[ ] [ ]
[ ] [ ]

1 1

2 2

0 0

0

x w

x w C

=

=

We would be better off taking root 1 from the first choice and root 2 from the second choice.

B=C=0

Equation is:

2 0Ax =

The correct solution is a double root at 0x = , that is [ ] [ ] [ ]0 1 , 0 1x w . Instead we get

0B ≥
[ ] [ ]
[ ] [ ]

1 1

2 2

0 0

0

x w

x w A

=

=

0B ≤
[ ] [ ]
[ ] [ ]

1 1

2 2

0

0 0

x w A

x w

=

=
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We would rather take root 2 from first choice and root 1 from second choice. The situation is the reverse of
the previous one.

A=C=0

No real problem here. The equation is

2 0Bxw =

with the desired solutions [ ] [ ] [ ]1 0 , 0 1x w . The standard machinery gives us:

0B ≥
[ ]

[ ]

2
1 1

2
2 2

0

0

x w B B

x w B B

 = − − 
 = − − 

0B ≤
[ ]

[ ]

2
1 1

2
2 2

0

0

x w B B

x w B B

 = − + 
 = − + 

Final “standard” algorithm
Generating the appropriate choices for B=0 we get

0B >
[ ]

[ ]

2
1 1

2
2 2

x w C B B AC

x w B B AC A

 = − − − 
 = − − − 

0B <
[ ]

[ ]

2
1 1

2
2 2

x w B B AC A

x w C B B AC

 = − + − 
 = − + − 

A C≥ [ ]
[ ]

1 1

2 2

x w AC A

x w AC A

 = − 
 = − − 

0B =
A C≤ [ ]

[ ]
1 1

2 2

x w C AC

x w C AC

 = − − 
 = − 

Recall that we were careful to make the [ ]1 1x w solution vary continuously (homogeneously) for B

going from positive to zero to negative, although there is a jump via a homogeneous scale when B passes

zero. (That is, we made sure that the [ ]1 1x w solution doesn’t abruptly jump over the other solution

during this transition).
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When 0,B A C= = there doesn’t seem to be a good reason for picking one solution set over another.

This is only relevant for A C= − since A C= gives us no real roots.

The discriminant and ABC space
Of course there are only real roots if the discriminant (under the square root) is positive.

2B AC∆ = −
Note that this is minus the determinant of the coefficient matrix

det
A B

B C

 ∆ = −  
 

The sign of this (plus minus or zero) tells how many real roots we get.

It is useful to visualize the space of possible quadratics in ABC space. The surface where the discriminant
is zero is a cone with its axis along the A=C line, and with the A and C axes embedded in it. Note that it is
not a circular cone; the cross section is elliptical.

A

C

B

∆<0
No real roots

∆=0
Two coincident roots

∆>0
Two distinct roots

∆<0
No real roots

Looking at the relative volumes involved, it is comforting to know that, statistically at least, you are much
more likely to stumble upon a quadratic with two real roots.

General solution schema
We are going to come up with some other ways of solving quadratics. Let’s first see how our current
solution was arrived at. Solving polynomials is typically done by a transformation of the parameter space
chosen to make a new polynomial that has no linear term. In homogeneous terms a general transformation
of the parameter will be a 2x2 matrix:

[ ] [ ]ˆ ˆ
a b

x w x w
c d

 =  
 

Transformed polynomial is
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[ ]

[ ]

[ ]

ˆ
ˆ ˆ

ˆ

ˆ ˆ ˆ
ˆ ˆ

ˆˆ ˆ

A B x
x w

B C w

a b A B a c x
x w

c d B C b d w

A B x
x w

wB C

    =   
   
       
       
       
   =    

   

Pick the transformation to get rid of the B̂ term so that

ˆ 0

ˆ0

a b A B a c A

c d B C b d C

       =       
        

Then we just solve the equation

2 2ˆ ˆˆ ˆ 0Ax Cw+ =
the solutions are:

2

2

ˆˆ
ˆˆ

x C

w A
= −

ˆˆ
ˆˆ

x C

w A
= ± −

This has real solutions only if Â and Ĉ have different signs. Depending on which one is negative the
solutions can also be written;

[ ] ˆ ˆ ˆ ˆˆ ˆ orx w C A C A   = ± − ± −      

Then we simply transform these roots back to the original parameter space via

[ ] [ ]ˆ ˆ
a b

x w x w
c d

 =  
 

Choices of transformation
Now let’s look at various ways to select the transformation matrix

Conventional choice
Use a “translation” of the form

[ ] [ ] 1 0
ˆ ˆ

1
x w x w

δ
 =  
 

so that



2D(1DH) Roots of a Quadratic

James F. Blinn

98

2

ˆ ˆ 1 0 1

ˆˆ 1 0 1

1

0 1

2

A B A B

B CB C

A B

A B B C

A A B

A B A B C

δ
δ

δ
δ δ

δ
δ δ δ

       =       
       
   =    + +   

+ =  + + + 

Pick
B

A
δ = − to make ˆ 0B = and we have

2

1 0

1

0ˆ ˆ

ˆˆ 0

a b
B

c d
A

A
A B

B AC
B C

A

    =   −   
    =  − +      

Root is

2

2

ˆˆ
ˆˆ

x C B AC

w AA

−= ± − = ±

[ ] 2ˆ ˆx w B AC A = ± − 

Going back to original parameter space:

[ ] 2 2

1 0

1
x w B AC A B B AC AB

A

 
    = ± − = − ± −    −
 

Homogeneous choice
Our alternative of solving for w in terms of x effectively uses a “perspective” transformation that looks like
the transpose of the previous “translation” transformation.

[ ] [ ] 1
ˆ ˆ

0 1
x w x w

δ =  
 

Here we have
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2

ˆ ˆ 1 1 0

ˆˆ 0 1 1

1 0

1

2

A B A B

B CB C

A B B C

B C

A B C B C

B C C

δ
δ

δ δ
δ

δ δ δ
δ

       =       
       

+ +   =    
   
 + + +

=  + 

Pick
B

C
δ = − to make ˆ 0B = and we have

2

1

0 1

ˆ ˆ 0
ˆˆ

0

B
a b

C
c d

AC BA B
C

B C C

 −   =      
 −   =        

Root is

2

2

ˆˆ
ˆˆ

x C C

w B ACA
= ± − = ±

−

[ ] 2ˆ ˆx w C B AC = ± − 

Going back to original parameter space:

[ ] 2 21

0 1

B
x w C B AC C B B ACC

 −    = ± − = − ± −    
 

Comparison
Let’s look at this whole transformation process in ABC space. We have

( )
( )

2 2

2 2

ˆ ˆ

ˆˆ

2

2

A B a b A B a c

c d B C b dB C

aA bB aB bC a c

cA dB cB dC b d

a A abB b C acA bc ad B bdC

acA bc ad B bdC c A cdB d C

       =       
       

+ +   =    + +   
 + + + + +

=  + + + + + 
Write this in the form
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2 2

2 2

ˆ2
ˆ

ˆ2

Aa ab b A

ac bc ad bd B B

c cd d C C

         + =               

We are using either of two transformation matrices

1 0

1δ
 
 
 

or
1

0 1

δ 
 
 

So our two choices for a,b,c,d give the following transformations in ABC space.

2

ˆ1 0 0
ˆ1 0

ˆ2 1

AA

B B

C C

δ
δ δ

          =                

or

2 ˆ1 2
ˆ0 1

ˆ0 0 1

AA

B B

C C

δ δ
δ

          =               

What this means is that the “path” an [A,B,C] point takes under this transformation is a parabolic arc from
its original position to the B=0 plane. The path is perpendicular to the A axis in the first case, and
perpendicular to the C axis in the second case

. DIAGRAM.

Eigenvector choice
In order to avoid ill conditioned transformations, let’s see what happens if we pick the transformation to be

the two (orthogonal, unit length) eigenvectors of the matrix. Then Â and Ĉ are the eigenvalues.

1

2

0cos sin cos sin

0sin cos sin cos

A B

B C

λθ θ θ θ
λθ θ θ θ

−        =       −       

We are dipping into Euclidean geometry when we talk about unit length of the eigenvectors. In fact,
eigenvectors are not precisely defined here since the product of a vector and the matrix is not a vector, it’s a
covector. I.e the expression

λ=PQ P

is meaningless given our rules of co/contravaniance. We can patch this up later. I derive in another chapter
the explicit solution for eigenvectors/values here. Punchline is, first define

2
2

2
A C

B
− ∆ = + 

 
Get the eigenvalues from

0A C+ <
2

2

1
2

2
A C

AC B

λ

λ
λ

+= − ∆

−=
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0A C+ >
1

2

2
1

2
A C

AC B

λ

λ
λ

+= + ∆

−=

Get the unit length eigenvectors from normalizing the vectors from the choices:

1v 2v

0C A− >
2

C A
B

− + ∆   2
C A

B
−  − + ∆    

0C A− <
2

C A
B

−  − − ∆     2
C A

B
− − ∆  

So transformed roots are from

1

2

ˆ
ˆ
x

w

λ
λ

= ±

And original roots look something like:

[ ] 1 2ˆ ˆx w x w= +v v

Geometric interpretation; the transformation rotates the vector [ ]A B C about the line A+C=0 until it

lies in the B=0 plane.

Not sure if this buys us anything.

Most general choice
Now here’s the reason for this chapter. We will attempt to catalog all transformations that result in
ˆ 0B = . We can write the formulas for ˆ ˆˆ, ,A B C as

( ) ( )
( ) ( )

2 2

2 2

ˆ ˆ 2

ˆˆ 2

A B a A abB b C c aA bB d aB bC

c aA bB d aB bC c A cdB d CB C

   + + + + +
=   + + + + +    

First, pick any values for a,b (this selection will effectively parameterize our class of solutions). Then find

the appropriate values for c,d. to make ˆ 0B = . These will be

( )
( )

c aB bC

d aA bB

= − +

= +

Then
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( ) ( )( ) ( )

2 2

2 2

ˆ 2

2

C c A cdB d C

aB bC A aB bC aA bB B aA bB C

= + +

= + − + + + +

This mess can be factored. It happens that it equals

( )2ˆ ˆC A AC B= −

How do we know this? Here’s where diagram techniques shine. In diagram terms we have

ab Q cdB̂ =

ab Q abÂ =

cd Q cdĈ =

We have defined cd so that

cd ab Q=

This makes ˆ 0B = since, in diagram form it gives the same glop on both sides of an epsilon.

ab Q abQB̂ =

Then plugging the definition of cd into the definition of Ĉ gives us

Ĉ = Qab Q abQ

ab abQ
det Q

=

The factorization of Ĉ has become almost trivial.

This means we have reduced the transformed matrix to:

2

ˆ ˆ 1 0ˆ
ˆˆ 0

A B
A

AC BB C

   
=   −   

The transformed equation is:

2
ˆˆ
ˆˆ

x C
B AC

w A
= ± − = ± −
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[ ] 2ˆ ˆ 1x w B AC = ± − 

and going back to the original coordinate system gives us

[ ] 2

2 2

2 2

1
a b

x w B AC
aB bC aA bB

a B AC aB bC b B AC aA bB

a B B AC A b C B B AC

  = ± −    − − + 
 = ± − − − ± − + + 
   = − ± − − − −   ∓

We can see that these are the two solution schema we chose between in the earlier section, blended by a
and -b. We found that, effectively, we needed to get one root from one choice of (a,b) and the other root
from a different choice of (a,b).

Watch the determinant

Note that the determinant of the transformation matrix is

2 2 ˆdet 2
a b

a A abB b C A
aB bC aA bB

 
= + + = − − + 

So the only time this won’t work is if the (a,b) we picked was already a root of Q.

Another way to look at this is by saying that Q is composed of the outer product of its two roots,
symmetrized.

= r2 r1r2r1 +Q

We have constructed cd to be Q multiplied in on the left side by ab, and by an epsilon in on the right. The
new epsilons merge with the existing ones and we have:

cd = r2 r1r2r1 +ab ab

SO if ab equals one of the roots, say r2, then the second term of this is zero and

cd = abr1ab

That is, cd (the second row of the matrix) is a scalar times ab (the first row of the matrix) and the matrix is
singular

Roots in Diagram Notation
Let’s play around with our general result some more. Moving the minus from b to inside the vector it
multiplies we have
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[ ]

[ ]

2 2

2 1 0

0 1

x w a B B AC A b C B B AC

B A
a b B AC

C B

   = − ± − + − ± −   
 −    = ± −    −    

Where [a,b] can by any vector that doesn’t make this zero. This is important because the matrix in curly
brackets is singular. Now note the following interesting fact: the first matrix in curly brackets is just Q
times epsilon. We can therefore write the solution in diagram form (using ∆ for the discriminant) as:

x,y = ab Q ab± ∆

We can see that this solves the quadratic by plugging it in:

ab Q

x,y Q x,y

ab Q

abQ

ab ± ∆

ab± ∆

ab± ∆

Q

Q

abQQ

ab ± ∆Q

=

+

+

+

The second and third terms are identically zero since they are identical glop on either side of an epsilon.
And the first and last terms since det∆ = − Q .

This is amusing to be sure, but it becomes much more relevant when we generalize to higher dimensions.

Signs of roots
See section on Quartic polynomials
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Eigenvalues/vectors of a symmetric 2x2 matrix
THIS CHAPTER IS FAIRLY ROUGH. YOU CAN SKIP IT IF YOU LIKE

Given a symmetric matrix we want to find the two eigenvalues, 1 2,λ λ , and eigenvectors, 1 2,v v that

satisfy

i i i

A B

B C
λ  = 

 
v v

Technique 1—Find the Eigenvalues first
Form the characteristic equation and set it to zero.

Eigen values
The eigenvalues are solutions to

det 0
A B

B C

λ
λ

−  = − 

( )( )
( ) ( )

2

2 2

0

0

A C B

A C AC B

λ λ

λ λ

− − − =

+ − − + − =

Rewrite slightly to allow use of our standard quadratic equation form:

( )2 22 0
2

A C
AC Bλ λ + + − + − = 

 

The discriminant of this is

( )
2 2

2 2

2 2
A C A C

AC B B
+ −   − − − = + = ∆   

   
Its always positive so we know we always have two real eigenvalues. The conventional quadratic equation
solution is

2
A Cλ += ± ∆

But this has the same numerical problems as any quadratic equation. A better idea is to plug in the standard
homogeneous quadratic equation solution:

0A C− − >
[ ]

[ ]

2
1 1

2 2

2

1
2

A C
x w AC B

A C
x w

+ = − − ∆  
+ = − ∆  
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0A C− − <
[ ]

[ ]

1 1

2
2 2

1
2

2

A C
x w

A C
x w AC B

+ = + ∆  
+ = − + ∆  

21 AC B≥ − [ ]

[ ]

2
1 1

2
2 2

1

1

x w AC B

x w AC B

 = − + 
 = − − + 

0A C− − =
21 AC B≤ − [ ]

[ ]

2 2
1 1

2 2
2 2

x w AC B AC B

x w AC B AC B

 = − − − + 
 = − − + 

Cleaning this up a bit we get:

0A C+ <
2

2

1
2

2
A C

AC B

λ

λ
λ

+= − ∆

−=

0A C+ >
1

2

2
1

2
A C

AC B

λ

λ
λ

+= + ∆

−=

0A C+ =
2 2

1

2 1

A Bλ

λ λ

= ∆ = +

= − ∆ = −

Eigenvectors
Given an eigenvalue, the corresponding eigenvector can be represented in either of two ways, from the
characteristic equation

[ ] [ ]

( ) ( )
( ) ( )

0 0

0

0

A B
x w

B C

x A wB x A Bw

xB w C xB C w

λ
λ

λ λ
λ λ

−  = − 
− + = ⇒ − =

+ − = ⇒ = −

So an eigenvector can be written as either of
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[ ] [ ]
[ ] [ ]
x w B A

x w C B

λ
λ

= −

= −

In particular we could choose either

[ ] [ ]1 1 1orB A C Bλ λ= − −v

Which one? We look at the values:

1 2 2
A C C A

A Aλ + −− = + ∆ − = + ∆

1 2 2
A C C A

C Cλ + − − = + ∆ − = − − ∆ 
 

In a manner similar to the quadratic equation solution, we pick the one that causes us to add two positive
values, or two negative values.

Now what about v2? We have the choices

[ ] [ ]2 2 2orC B B Aλ λ= − −v

We could do an analysis similar to above, but there is a better way. We expect that the two eigenvectors are
perpendicular. That is, if v1 is as above we expect that v2 is a 90-degree rotation of it:

( ) ( )2 1 1orA B B Cλ λ= − − − −      v

The easiest way to see this is to note the relation:

1 2

A B
trace A C

B C
λ λ  + = = + 

 
so

( )1 2A Cλ λ− − = −

Our final algorithm is

1v 2v

0C A− >
2

C A
B

− + ∆   2
C A

B
−  − + ∆    

0C A− <
2

C A
B

−  − − ∆     2
C A

B
− − ∆  

Technique 2—Find the Eigenvectors first
Since the matrix is symmetric we know that the eigenvectors are perpendicular. They can be written as the
sin and cos of some angle
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1

2

0cos sin cos sin

0sin cos sin cos

A B

B C

λθ θ θ θ
λθ θ θ θ

      
=       − −      

or

1

2

0cos sin cos sin

0sin cos sin cos

A B

B C

λθ θ θ θ
λθ θ θ θ

−       
=       −       

The rotated matrix is

2 2 2 2

cos sin cos sin

sin cos sin cos

cos sin cos sin cos sin

sin cos sin cos sin cos

cos 2 sin cos sin sin cos cos sin sin cos

sin cos

A B

B C

A B B C

A B B C

A B C A B B C

A

θ θ θ θ
θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ
θ

−     
=     −     

+ + −   
=   − + − +   

+ + − + − +
− 2 2 2cos sin sin cos sin 2 sin cos cosB B C A B Cθ θ θ θ θ θ θ θ θ
 
 + − + − + 

Note that the trace of the rotated matrix remains constant: A+C

Apply the double angle formula

( )
( )

2 2 2 2cos 2 cos sin 1 2sin 2cos 1

sin 2 2sin cos

θ θ θ θ θ
θ θ θ

= − = − = −

=

and get:

( ) ( ) ( )

( ) ( )

2 2ˆ cos 2 sin cos sin

cos 2 1 1 cos
sin 2

2 2

cos 2 sin 2
2 2

A A B C

A B C

A C C A
B

θ θ θ θ
θ θ

θ

θ θ

= + +

+ − 2   
= + +   

   
+ −= − +

( ) ( )

2 2ˆ sin cos cos sin sin cos

sin 2 cos 2
2

B A B B C

C A
B

θ θ θ θ θ θ

θ θ

= − + − +
− = + 
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( ) ( ) ( )

( ) ( )

2ˆ sin 2 sin cos cos

1 cos cos 2 1
sin 2

2 2

cos sin 2
2 2

C A B C

A B C

A C C A
B

θ θ θ θ
θ θ

θ

θ θ

= − +

− 2 +   
= − +   

   
+ −= + 2 −

Geometric interpretation: Rotate the vector [ ]A B C about the line A+C by the angle 2θ . To

diagonalize the matrix we rotate it to the ˆ 0B = plane.

( ) ( )

( )

( )

2
2

2
2

sin 2 cos 2 0
2

sin 2
2

cos 2
2 2

C A
B

C A
B B

C A C A
B

θ θ

θ

θ

−  + = 
 

− = − + 
 

− −   = +   
   

or get in terms of original angle by:

2 2sin cos cos sin sin cos 0A B B Cθ θ θ θ θ θ− + − + =

( )2 2sin sin cos cos 0B C A Bθ θ θ θ− + − + =

( )

( )

2 2

2 2

sin sin cos cos 0

4
sin cos

2

B C A B

A C C A B

B

θ θ θ θ

θ θ

− + − + =

 − ± − + =
 −
 

blah blah,, See Numerical Recepies section on numerically finding eigenvectors.
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1D(2DH)
Resultant of Two Quadratics

The resultant of two polynomials is a function of their coefficients that indicates whether they have a
common zero. We will construct this function explicitly for several simple polynomials. The idea is to
form various linear combinations of the polynomials that are one degree lower than the ones we started
with. This brute force approach is practical for lower order polynomials and gives some insight into what
resultants really mean.

Two linear equations
Is there a common root of the two linear equations?

1 0

1 0

0

0

K x K w

L x L w

+ =
+ =

If these are both zero, then any linear combination is also zero:

( ) ( )

( )

1 1 0 1 1 0

1 1 0 1 1 1 1 0

0 1 1 0

0

0

0

L K x K w K L x L w

K L x K L w K L x K L w

K L K L w

+ − + =
+ − − =

− =

So if both of the original equations are zero for some x,w then the parenthesized expression above has to be
zero. This, then, is our formula for the resultant of two linear polynomials.

( ) 0 1 1 0,K L K L K L= −R

Since a linear polynomial has only one root, it is not surprising that the resultant is the formula for
homogeneous equality of the two polynomials.

We can write the resultant in matrix form:

[ ] 1
1 0

0

0 1
0

1 0

L
K K

L

−    =  
   

Diagram notation the resultant looks like

K L( ),K L =R

Linear and Quadratic
Find conditions for a common root to a linear and a quadratic polynomial

2 2
2 1 0

1 0

2 0

0

Q x Q xw Q w

L x L w

+ + =
+ =

Again take linear a combo:
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( ) ( )
( ) ( )

( )

2 2
1 2 1 0 2 1 0

2 2 2
2 1 1 1 0 1 2 1 2 0

1 1 2 0 0 1

2 0

2 0

2 0

L Q x Q xw Q w Q x L x L w

Q L x Q L xw Q L w Q L x Q L xw

Q L Q L x Q L w

+ + − + =

+ + − + =

− + =

We now have two linear equations

( )1 1 2 0 0 1

1 0

2 0

0

Q L Q L x Q L w

L x L w

− + =
+ =

Plug this into the formula we got in the previous section for two linear polynomials:

( ) ( ) ( )0 1 1 1 1 2 0 0, 2L Q Q L L Q L Q L L= − −R

Simplify a bit and the final resultant formulation is

( ) 2 2
0 1 1 1 0 2 0, 2L Q Q L Q L L Q L= − +R

Write as matrix:

[ ]

[ ]

10 1
1 0

01 2

*

2 1 1
1 0

1 0 0

0

LQ Q
L L

LQ Q

Q Q L
L L

Q Q L

−    =  −   

    =   
   

That is, L times the adjoint of the Q matrix. The diagram looks like

L Q L( ),L Q =R

Two Quadratics
Find out if there are any common roots between two quadratics.

2 2
2 1 0

2 2
2 1 0

2 0

2 0

Q x Q xw Q w

R x R xw R w

+ + =

+ + =

Brute force algebra

Form a linear combination designed to get rid of the 2x term

( ) ( )2 2 2 2
2 2 1 0 2 2 1 02 2 0R Q x Q xw Q w Q R x R xw R w+ + − + + =

2 2 2 2
2 2 1 2 0 2 2 2 2 1 2 02 2 0Q R x Q R xw Q R w Q R x Q R xw Q R w+ + − − − =

( ) ( ) 2
1 2 2 1 0 2 2 02 0Q R Q R xw Q R Q R w− + − =

We can throw out the common factor of w here and get the linear polynomial:
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( ) ( )1 0 1 2 2 1 0 2 2 02 0L x L w Q R Q R x Q R Q R w+ = − + − =

so

( )
( )

1 1 2 2 1

0 0 2 2 0

2L Q R Q R

L Q R Q R

= −

= −

Now plug this into the result from the last section. The resultant of L and Q is

( )
( ) ( )

( )

22 2
0 1 1 1 0 2 0 0 1 2 2 1

1 1 2 2 1 0 2 2 0

2

2 0 2 2 0

2 4

4

Q L Q L L Q L Q Q R Q R

Q Q R Q R Q R Q R

Q Q R Q R

− + = −

− − −

+ −

Do a little clever factoring of the first two terms

( ) ( ) ( )( )
( )

1 2 2 1 0 1 2 2 1 1 0 2 2 0

2

2 0 2 2 0

4 4Q R Q R Q Q R Q R Q Q R Q R

Q Q R Q R

= − − − −

+ −

( ) ( )
( )

1 2 2 1 0 2 1 1 2 0

2

2 0 2 2 0

4 Q R Q R Q Q R Q Q R

Q Q R Q R

= − − +

+ −

( ) ( ) ( ){ }2

2 1 2 2 1 1 0 0 1 0 2 2 04Q Q R Q R Q R Q R Q R Q R= − − + −

The global factor of Q2 is spurious and the final form for the resultant is:

( ) ( )( ) ( )2

1 0 0 1 1 2 2 1 0 2 2 0, 4Q R Q R Q R Q R Q R Q R Q R= − − + −R

Tensor diagrams
How do we express this in diagram notation? First of all, what do we expect it to look like? Since each
term of the resultant has Q and R coefficients twice, we expect the diagram to consist of two Q nodes and
two R nodes glued together with epsilons.

Now let’s go back and retrace the derivation using diagrams. The two polynomials are:

( ) [ ]

( ) [ ]

2 1

1 0

2 1

1 0

,

,

Q Q x
x w x w

Q Q w

R R x
x w x w

R R w

   =    
  

   =    
  

Q

R

The linear combination we generated was

2 2R Q−Q R

In diagram form this looks like:
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−R

1,0

Q

x,w

1,0 x,w

R

x,w

x,w

Q

1,0

1,0

Look at just the first term of this. We apply the following epsilon delta identity

= −

In fact, we apply it twice, to the top pair of arcs and the bottom pair of arcs. Doing this in one crack
generates a total of four terms:

= −

− +

R

1,0

Q

x,w

1,0 x,w

R Q

1,0

1,0

x,w

x,w

R Q

1,0

1,0

x,w

x,w

R Q

1,0

1,0 x,w

x,w

R Q

1,0

1,0 x,w

x,w

Notice that the second and third terms on the right are equal to each other. Now look at the first term on

the right. Remarkably, it is equal to 2Q R , the second term of our original subtraction. Therefore, our
linear combination of quadratics expressed as a diagram looks like:

- += -22 2R Q− =Q R R

1,0

Q

x,w

1,0 x,w

R Q

x,w

x,w

1,0

1,0

R Q

1,0

1,0x,w

x,w

R Q

1,0 x,w

1,0 x,w

Now the right hand side of this has a common factor:

x,w1,0 w= −
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We can discard this factor just like we did with the algebraic discussion. The linear polynomial we have
just generated, L looks like:

-
R Q

x,w

R Q

1,0

-2=

L

1,0 x,w
x,w

This actually looks a bit more lopsided than it really is. Let’s apply epsilon/delta to the rightmost term:

R Q R Q R Q
= -

x,w x,w x,w1,0 1,0 1,0

Combining these last two equations makes the much neater:

−
R Q

x,w

=

L

1,0
x,w

R Q

1,0 x,w

−

Now reorient this and remove the placeholder x,w nodes to get the final expression for our linear result:

+=L −
RQ

1,0

QR

1,0

Now glue this into the diagram for the resultant of L and Q:

L Q L

The two terms for each of two instances of L give us four total terms:
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+

+ −RQ

1,0

R Q

1,0

Q QR

1,0

R Q

1,0

Q

−
RQ

1,0

Q R

1,0

Q QR

1,0

Q R

1,0

Q

First note that terms two and three are identical (one is a rotation of the other.)

This formulation of the resultant is not as pretty as we would like. We would like to get rid of the dangling
(1,0) nodes. We can do this by applying two important identities.

Identity 1 – Determinant factorization

The first application should become familiar to you after working with tensor diagrams for any length of
time: whenever we see a chain of two identical matrices we use:

=QQ

-1/2 Q

Q

This is tantamount to factoring the determinant of Q out of an expression. Lets go

Term 2 and Term 3 each reduce to:

R

1,0

R Q

1,0

Q Q
-1/2

Q Q

1/4

=
R R

1,0

Q

1,0

Term 4 reduces to
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R

1,0

Q R

1,0

-1/2

Q Q

Identity 2 – Reordering

That’s all the consecutive identical matrices we have for now. The second identity helps us to reorder the
chain to get more possible factorization. The identity (from our catalog) is

−=

A B

Cp

B

C

A

p

B

C

A

p

Let’s apply this to the right hand factor of Term 4:

R

1,0

Q

R1,0

= −R

1,0

Q

R1,0

R

1,0

Q

R

1,0+1/2

=

R

1,0

Q

R1,0

R

1,0

Q

R1,0

−

Putting Term 4 back together, we find that it equals:

1,0

Q

1,0-1/4

R

1,0

Q

R1,0

+R

R

Q

Q

1/2

Q

Q

Now lets clean up Term 1. Applying the same trick give us:
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RQ

1,0

R

Q1,0

Q RQ

1,0

R

Q1,0

Q RQ

1,0

R

Q1,0

Q
−=

Now lets be observant. The first term on the right is minus Term 2. To simplify the second term on the
right we use a permutation of the letters of what we proved for the right hand factor of Term 4. This gives
us:

Q

1,0

R

Q

1,0+1/2

= Q

1,0

R

Q1,0

−Q

1,0

R

Q1,0

Term 1 then boils down to:

Q Q

-1/4

R R

1,0

Q

1,0

Q

1,0

R

Q

1,0+1/2

Q

1,0

1,0

+ R

Q

R

Q

R

Q

−

Now for the grand summation: Term1-Term2-Term3+Term4 equals

−Q

1,0

1,0

R

Q

R

Q

Q

1,0

1,0

Q

Q

R

R

Again we throw out the spurious factor of 2Q , which here takes the form of two (1,0) nodes applied to Q,
and we get our final resultant diagram:
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−
R

Q

R

Q

Q

Q

R

R

( ),Q R =R

That was a whole lot of work. But we learned something about the manipulation of diagrams along the
way. Now let’s do this a different way.

(I now realize that I’ve used R for two different things, “Resultant” and as a name for one of the quadratics.
Hope that’s not too confusing.)

Another Solution
Sederberg in {reference} gives a general way of finding resultants of polynomials. Changing notation a bit,
we first define our polynomials as

( )
( )

2

2

Q s as bs c

R s As Bs C

= + +

= + +

The basic idea is form the expression:

( ) ( ) ( ) ( )Q s R t Q t R s

s t

−
−

Note that this is symmetrical with respect to swapping s and t. This expression will ultimately give us a
matrix that we will find the determinant of.

First, though, let’s see what the expression looks like. We can write in Q and R vector product form:

( )

( )

2

2

1

1

a

Q s s s b

c

A

R s s s B

C

 
  =    
  
 
  =    
  

Then we have

( ) ( ) ( ) ( )

[ ] [ ]
2 2

2 21 1

1 1

Q s R t Q t R s

a t A t

s s b A B C t s s B a b c t

c C

− =

      
         −         
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2 2

2 2

2

2

1 1

1 1

0

1 0

0 1

aA aB aC t aA bA cA t

s s bA bB bC t s s aB bB cB t

cA cB cC aC bC cC

aB bA aC cA t

s s bA aB bC cB t

cA aC cB bC

=

      
         −         
            

=

 − − 
    − −     
  − −   

(*)

Note that this matrix is the anti-symmetric-matrix form of the cross product of [abc] and [ABC]. Naming
the entries in this matrix x,y,z we can express it as:

( ) ( ) ( )
( ) ( ) ( )( )

2

2

2

2 2

2 2 2 2

2 2 2 2

0

1 0

0 1

1

z y t

s s z x t

y x

t

zs y zs x ys xs t

zst yt zs t xt ys xs

x s t y t s z s t st

s t x y t s z st

 − 
   = −     
  −   

 
  = − + − − +   
  

= − + + − − +

= − + − + −

= − − + +

We thus can see why the expression ( ) ( ) ( ) ( )Q s R t Q t R s− has a factor of (s-t). We can then write

this as the lower order matrix product:

( )[ ]1
1

z y t
s t s

y x

−   
= −    −   

One way to look at this is to note that the 3x3 matrix is singular; it has one zero eigenvalue and two pure
imaginary ones. Thus, of the three polynomials represented by (*) one is redundant. So we can downgrade
to two equations. This technique selects the two equations in a fashion that doesn’t have burps due to
singularities.

Another way to look at this is to think of the 3x3 anti-symmetric matrix as the sum of two shifted copies of
this 2x2 matrix (expanded with zeroes if necessary):
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( )
2

2

2 2

2 2

2

2

0 0 0

1 0

0 1

0 0 0 0

1 0 1 0

0 0 0 1 0 1

0

1

0 1

t

s t s s z y t

y x

z y t t

s s y x t s s z y t

y x

z y t

s s z y y x t

y x

  
   − −     
  −   

     −  
         = − − −          
      −     

 − 
   = − −     
  −   

Anyway, what do we do with this 2x2 symmetric matrix? If we have the situation where some s satisfies
both Q and R, then the expression

[ ]1 0
1

z y t
s

y x

−   
=   −   

is zero for any value of t. This means that [s 1] is in the null space of the matrix and the matrix is singular.
So the resultant is

( ) 2, det
z y

Q R zx y
y x

− 
= = − − 

R

As a point of geometric intuition: if we think of Q and R as 3-vectors in coefficient space with components
[abc] and [ABC], it means that any two polynomials that have common roots have the cross product of

their coefficient vectors lying on the cone 2 0zx y− = .

Note; The conventional definition of resultant has a particular choice for its sign. I haven’t cleaned up my
derivations to match this properly yet. For now, I’m just looking for an expression being equal to zero.

Diagram version
Reconstructing this derivation using diagram notation is very similar to what we did for the brute force
technique. I will just point out the highlights; for a hint at the details you can look back at the previous
section. We have

s Q s( )Q s =

s R s( )R s =

The formula I showed for Sederbergs derivation used non-homogeneous parameters s and t. We can now
expand this and think of the nodes s and t as representing homogeneous parameter values.

The expression ( ) ( ) ( ) ( )Q s R t Q t R s− looks (after an epsilon/delta reshuffling) like
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Q

s

s

R

t

t

Q

s

s

R

t

t

-

s

Q

s

t

R

t

= +

st

Q

s

R

t

-2

We can now see the epsilon product of nodes s and t as being the homogeneous version of the common

factor s-t. Again, with the diagram notation we can see why s-t is a factor of ( ) ( ) ( ) ( )Q s R t Q t R s− .

Now divide out this factor, and do another epsilon/delta operation on the right side and you get

=Q

s

s

R

t

t

-

s

Q

s

t

R

t

s t

-

ts

R Q

ts

Q R

We can see that exchanging s,t in the above doesn’t change the expression. And that the right side
represents s and t being applied to a symmetric matrix: To find the determinant of this symmetric matrix
combine it with a copy that has been turned over. We have a total of four terms, two from the top factor
and two from the bottom factor. Net:

−

− +

R Q

RQ

Q R

RQ

R Q

QR

Q R

QR

Which merges into:
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=
Q R

QR
( ),Q R =R

R

Q Q

R

−

2 2

Show that the two diagram formulations are the same
First take a look at the ring QQRR. This has QQ in sequence so we can apply the determinant factoring
identity. Note that since the epsilons in the QQ chain point the same way the factor is +1/2 instead of –1/2. :

R

Q Q

R

2

R R

2 Q

Q
+1/2

=

This neatens up to:

R

Q Q

R

2

=
Q

Q

R

R

Next, we evaluate the other type of ring by applying eps/del to the top and bottom epsilons:
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=

−

−

R Q

RQ

2
R Q

RQ

2

R Q

RQ

2

R Q

RQ

2

R Q

RQ

2

2

R

Q

R

Q

=

=

This final term is the other ring: QQRR. So this neatens up to be:

= −

R Q

RQ

2

R Q

RQ

2

Q R

RQ

The net resultant is the difference between these two above boxed equations, which gives us our desired
result (with a factor of 2 and a possible global minus that still needs to be cleaned up)

Show why this works
If you express the two quadratics in terms of their internal structure, i.e. their roots, for Q call them q1 q2:
and for R call them r1and r2.

Q = +q1 q2 q2 q1

R +r1 r2 r2 r1

Now plug this into the diagram for the resultant of Q and R. Simplify and you get something interesting.

Exercise for the reader…He He
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Discriminant of Cubic Polynomial
Once we have the resultant of two quadratics, the discriminant of a homogeneous cubic is not far behind.
The cubic is:

( ) 3 2 2 3, 3 3x w Ax Bx w Cxw Dw= + + +C

In general, the discriminant of a polynomial is the resultant of it with its derivative. In the homogeneous
case we can just take the resultant of the two partial derivatives wrt x and w.

2 2

2 2

3 6 3

3 6 3
x

w

Ax Bxw Cw

Bx Cxw Dw

= + +

= + +

C

C

This works because of the identity:

3x wx w+ =C C C

In diagram terms, the two partial derivatives (as quadratic polynomials) look like:

= C1,0Cx

= C0,1Cw

Then plugging this in to one of our forms for the resultant of Cx and Cw gives:

-

Cx

Cx

Cw

Cw

Cx

Cw

Cx

Cw

-

C

C

C

C

C

C

C

C

=

1,0 1,00,1 1,0

1,0 0,1 0,1 0,1

we can see that this is just the determinant of the 2x2 matrix:

C C
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1D(2DH)
Relationship Between Two Quadratic Polynomials

Some of this chapter is cannibalized from my column
Cross Ratios
IEEE CG&A

There are some important principles in the study of homogeneously represented geometry that first become
apparent when we consider the relationship between pairs of Quadratic Polynomials. Some of these might
seem fairly trivial in this context, but they lay the groundwork for more complex situations.

To recap:
We are given two quadratics (slight change of notation)

( )
( )

2 2

2 2

, 2

, 2

Q x w Ax Bxw Cw

R x w Dx Exw Fw

= + +

= + +

Or in matrix form

( ) [ ]

( ) [ ]

,

,

A B x
Q x w x w

B C w

D E x
R x w x w

E F w

   =    
   
   =    
   

We found that the two polynomials share a common root if the resultant is zero. In diagram form, the
resultant is equal to

−
R

Q

R

Q

Q

Q

R

R

( ),Q R =R

The Invariance of Invariants
Let’s take a closer look at the three diagram fragments from the calculation of the resultant. I will tabulate
them along with their explicit value

Diagram Value

Q

Q
( )22 AC B− −
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R

R
( )22 DF E− −

Q

R

2AF BE CD− + −

Transformation Invariance
There is an interesting property that each of these three quantities shares: They are invariant (or at least
their sign is invariant) under coordinate transformations. To see why, let’s see what happens if we take the
pair Q,R and transform them both by some transformation T. We have:

QT T

=

Q̂

Plug this into the first diagram of the table and we get:

Q

Q

Q

Q

^

^

T T

T T

=

Now apply the identity

detT=

T

T

So we have:
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Q

Q

Q

Q

^

^
=

(detT)2

and similarly:

R

R

R

R

^

^
=

(detT)2

Q

R

Q

R

^

^
=

(detT)2

What does this mean? Since the determinant of T appears only in squared form, it means that the signs of
the three small diagrams doesn’t change under the (same) coordinate transformation of (both) Q and R.
The sign (or zeroness) of these three quantities is an inherent property of the relationship between Q and R
and is not changed by simply reparametrizing them (both).

In fact, in Euclidean geometry we deal only with transformations that have unit determinant (they are pure
rotations). Using this machinery in Euclidean geometry we can say even more. Not just the sign, but the
value itself of the diagrams remains constant under geometric transformations.

This is a fundamental principle that we will bring with us both to higher order curves and to higher
dimensionality:

Any diagram constructed of coefficient nodes glued together with epsilon nodes
represents a transformationally invariant quantity. One of my main interests is to do two
things: Given such a diagram, find out what geometric invariant it represents. And
given a geometric invariant, construct a diagram that “signals” it.

Net invariants
We therefore have four algebra-to-geometry indicators for the relation between Q and R.

Invariant Invariant values

Q

Q

Negative, Zero,
Positive
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R

R

Negative, Zero,
Positive

Q

R

Zero, Nonzero

−
R

Q

R

Q

Q

Q

R

R

Negative, Zero,
Positive

There are potentially 3x3x2x3=54 different configurations of Q and R that are distinguishable by this
technique. However, since the resultant is a function of the other three quantities, its sign is not
independent of them, and there are fewer than 54.

But there’s another calculation we can do that gives a continuous invariant. To see this we first digress into
a discussion of cross ratios.

The Cross Ratio
Geometry is the study of what properties of a figure stay the same as the figure undergoes some transform.
For example, in Euclidean geometry the allowable transformations are rotations and translations.
Properties that stay constant include distances and angles. For Projective geometry, like we use with
homogeneous coordinates, the transformations include perspective projections. In this case one thing that
emphatically does not stay the same is geometric length. A property that does, however, is something called
the cross ratio. This is defined by reference to the following figure where lines p, q, r and s all intersect at
the same point.

A

B

C

D

p

q

r

s

m

In this figure the cross ratio is the ratio of the ratios of the following distances.

χ = AB BD
AC CD

This value is constant no matter where line m is placed. It is also constant if the whole diagram undergoes
a homogeneous transformation (possibly including perspective).
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This has always puzzled me. If geometric distances aren’t preserved, and ratios of geometric distances
aren’t preserved, then how come the ratio of ratios of geometric distances are preserved. Well, here’s a
quick demonstration.

The First Ratio
Let's begin by calculating the Euclidean distance between points A and B. We will start with the 2D
homogeneous coordinates of each point, which we will name as follows:

A

B

=

=

A A A

B B B

x y w

x y w

To calculate a Euclidean distance we must turn these into the "real" coordinates by dividing out the
homogeneous w coordinate giving the two 2D Euclidean points:

A

A

A

A
and

B

B

B

B
x

w

y

w

x

w

y

w

L
NM

O
QP
L
NM

O
QP

Then subtract giving

A

A

B

B

A

A

B

B
x

w

x

w

y

w

y

w

− −
L
NM

O
QP

The desired distance is the length of this 2D vector. The fact that this quantity doesn't treat all three of the
x, y, and w components symmetrically is indicative of the fact the Euclidean distance is not a meaningful
concept in projective geometry.

Anyway, if we bash ahead to get the Euclidean length of the above vector we would need to calculate the
square root of the sum of the squares of these two components – wotta pain. Instead, let’s pretend for a
minute that the line m is horizontal. In that case, the length of the vector would equal the x component of
the vector. In other words

A

A

B

B
x

w

x

w

− = AB

In general, though, the line will be at some angle J. In this case, the x component will equal the length
times the cosine of the tilt angle, or

A

A

B

B
x

w

x

w

− = AB cosϑ

For the collinear segment BD, tipped by the same angle J, the x component would be

B

B

D

D
x

w

x

w

− = BD cosϑ

Now here’s where the first ratio will come in to simplify life. The top half of our desired cross ratio is the
ratio between these segments AB and segment BD. And, by similarity, the ratio of the x components is the
same as the ratio of the lengths. Taking the ratio of the above two equations we find

A
A

B
B

B
B

D
D

x

w

x

w

x

w

x

w

−

−
= =AB

BD
AB
BD

cos

cos

ϑ
ϑ

The angle dependency cancels. Yay! We can calculate the ratio of lengths without any squaring and square
rooting.
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The Second Ratio
Now let's look at the second ratio in the "ratio of ratios" game. Remember that what we are really
interested in is

χ = AB BD
AC CD

A little algebra on the AB/BD ratio turns it into

AB
BD

= −
−

F
HG

I
KJ

D

A

A B A B

B D B D
w

w

x w w x

x w w x

By changing B to C everywhere we can see that the second of our two ratios is

AC

CD
= −

−
F
HG

I
KJ

D

A

A C A C

C D C D
w

w

x w w x

x w w x

Now we can see why the ratio of ratios is something interesting homogeneously; it allows us to cancel the
ugly w component ratios. The whole cross ratio then boils down to

χ = = −
−

−
−

AB BD
AC CD

A B A B

B D B D

C D C D

A C A C
x w w x

x w w x

x w w x

x w w x

This is much more symmetric and closer to the sort of thing we expect we can make homogeneously
constant.

Constancy with changing m
Now we have to ask why is this ratio independent of the position of the line m? The root cause must have
something to do with the fact that the points A, B, C and D are generated from the lines p, q, r and s which
have the special relationship of all intersecting at the same point.

First, then, here's a brief reminder of the relationship between homogeneous points and lines. You can
calculate the point at the intersection of two lines by taking the cross product of the line vectors. This
means that the intersection of the four lines is

c c c1 2 3p q q r r s× = × = ×a f a f a f
The inclusion of the constants ci recognizes the fact that the cross products can represent the same
intersection point even though there might be a homogeneous scale factor applied to all three of the x y and
w components.

After some fooling around I have found that, for our purposes here, the neatest algebraic way to use this
relationship is to express the lines q and r in terms of p and s. I'll write this as

q p s

r p s

= +

= +

q q

r r

α β

α β

You can think of the pairs q qα β and r rα β as 1-dimensional homogeneous coordinates for the

collection of lines passing through the intersection of p and s. Any point passing through this intersection
has an α β pair that describes it. Any nonzero multiple of an α β pair represents the same line
though.

Now, let's relate this back to our points. Remember, the cross product is how we intersect lines so we have
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A p m

B q m

C r m

D s m

= ×
= ×
= ×
= ×

Now write the interior point B in terms of the outside lines and points:

B q m p s m

p m s m

A D

= × = + ×

= × + ×

= +

q q

q q

q q

α β

α β

α β

e j
a f a f

We can then write the top half of the cross ratio as

AB BD = −
−

=
+ − +

+ − +

=
−
−

=

A

D

A B A B

B D B D

A

D

A q A q D A q A q D

q A q D D q A q D D

A

D

q A D q A D

q A D q A D

A

D

q

q

w

w

x w w x

x w w x

w

w

x w w w x x

x x w w w x

w

w

x w w x

x w w x

w

w

α β α β

α β α β

β β

α α

β

α

e j e j
e j e j

Similarly

AC CD = A

D

r

r
w

w

β

α

The net cross ratio is now

χ β α

β α
= =AB BD

AC CD

q q

r r

The interesting thing about this is that the whole dependence on the location of m has disappeared, as well
as the dependence on which coordinate (x) we chose to use as the measure of distance ratios. That is, it is
only dependant on the orientations of the lines q and r relative to p and s. Any line m' intersecting these
will generate the same cross ratio. The cross ratio is thus a property of the locations of the four original
lines, rather than the extra line m. One key fact about this is that it contains only the ratios of the
alpha/beta pairs, so it is also independent of arbitrary scaling of the homogeneous vector for q and r.

Constancy under perspective
Now we can also see why this is true when the four lines are transformed via an arbitrary transformation
matrix. If we have a transformation T that changes our outer lines as

′ =
′ =

p Tp

s Ts

the inner lines will be

′ = = + = +

= ′ + ′

q Tq T p s Tp Ts

p s

q q q q

q q

α β α β

α β

e j

And similarly

′ = ′ + ′r p sr rα β
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Even if we try to disguise the line ′q by multiplying by some homogeneous scale we get the same value of
cross ratio: the ratio of ratios:

χ β α

β α
=

q q

r r

A particularly interesting special case of this occurs when we take the outside lines p and s as the x and y-
axes and transform by a simple non-uniform scale factor. Numerically this would be

p q r s

T

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

1

0

0 0 0

0

1

0

0 0

0 0

0 0 1

, , ,

q

q

r

r

f

f
x

y

α

β

α

β

From this we get:

′ =
L

N
MMM

O

Q
PPP

′ =
L

N
MMM

O

Q
PPP

′ =
L

N
MMM

O

Q
PPP

′ =
L

N
MMM

O

Q
PPP

p q r s

f f q

f q

f r

f r f
x x

y

x

y y0

0 0 0

0

0

, , ,
α

β

α

β

The alpha and beta components of q and r have changed to

′ = ′ =

′ = ′ =

q f q q f q

r f r r f r

x y

x y

α α β β

α α β β

,

,

The lines p and s haven’t moved. The lines q and r both have though. And the ratios of the lines q and r
are different.

′ ′ =

′ ′ =

q q
f

f
q q

r r
f

f
r r

y

x

y

x

β α β α

β α β α

e j

e j
But the Ratio of Ratios remains the same:

χ β α

β α

β α

β α
=

′ ′
′ ′

=
q q

r r

q q

r r

In other words, even though a transformation might not move the outside lines p and s, it will move the

inside lines q and r in such a manner that the change in the ratio q qβ αe j is matched by the same change in

the ratio r rβ αe j

Summary
The cross ratio is as much a property of the four mutually intersecting lines p, q, r and s as it is of the four
collinear points A, B, C and D. Any line m that you throw across the lines will generate four points with
the same cross ratio. You can, in turn, take any four collinear points A, B, C and D, and throw various
collections of four mutually intersecting lines through them. Each of these line collections will have the
same cross ratio. Finally, you can project any of these figures perspectively and also get an unchanged
cross ratio.

The true homogeneous nature of the cross ratio can best be seen by writing it as:
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χ β α

α β
=

q r

q r

and reviewing the effect of an arbitrary homogeneous scaling on each of the four lines. Remember that

q p s

r p s

= +

= +

q q

r r

α β

α β

Scaling only q will scale both qα and qβ , but this cancels out in c. Scaling only r will scale rα and rβ , this

will cancel. Scaling only p will scale qα and rα , cancel. Scaling only s will scale qβ and rβ , cancel. From

this we can see the necessity of this arrangement of ratio of ratios in constructing a quantity that remains
homogeneously meaningful. So, even though perspective transformations do not preserve distances, or
ratios of distances, they do preserve ratios of ratios of distances.

Another Variant
Another way to see this puts the vectors for p, q, r and s more directly into the equation. We make use of
our line m that does not pass through the common point of for p, q, r and s and solve explicitly for the
quantities qα qβ , rα and rβ . We first take the cross products of the above equations for q and r with both

p and s.

q q q

q q q

r r r

r r r

α β β

α β α

α β β

α β α

× = × + × = ×

× = × + × = ×

× = × + × = ×

× = × + × = ×

q p p p s p s p

q s p s s s p s

r p p p s p s p

r s p s s s p s

Each of these equations is a different homogeneous scaling of the common intersection point of p,q,r,s.
We dot each equation with m (knowing we never get zero since m is not on this point.)

( )
( )
( )
( )

q

q

r

r

β

α

β

α

× ⋅ = × ⋅

× ⋅ = × ⋅

× ⋅ = × ⋅

× ⋅ = × ⋅

q p m s p m

q s m p s m

r p m s p m

r s m p s m

So we’ve just solved for the scalars

( )
( )
( )
( )
( )
( )
( )
( )

q

q

r

r

β

α

β

α

× ⋅
=

× ⋅

× ⋅
− =

× ⋅

× ⋅
=

× ⋅

× ⋅
− =

× ⋅

q p m

s p m

q s m

s p m

r p m

s p m

r s m

s p m

And the expression for the cross ratio becomes:
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( ) ( )
( ) ( )

q r

q r
β α

α β

χ
× ⋅ × ⋅

= =
× ⋅ × ⋅

q p m r s m

q s m r p m

Now we can see more obviously why homogeneously scaling either p, q, r or s does not change the cross
ratio.

A new type of cross ratio
Now lets take another look at our resultant of quadratics Q and R. Let us construct the diagram expression

R

Q

R

Q

Q

Q

R

R

χ =

Now consider what happens to χ as Q and R are transformed geometrically by a matrix T. The factors of

detT cancel out and χ retains its same numerical value. Now consider what happens if either Q or R (or

both) are homogeneously scaled. The scale cancels out and χ retains its same numerical value. In other

words χ is a new type of cross ratio. It’s not obviously the ratio of four distances as with the 4-line case.
But it quantitative numerical value, not just its sign or zeroness, is preserved under geometric
transformations (in this case polynomial parameter transformations) and under homogeneous scaling of the
coefficients. In particular, if 1χ = , the resultant is zero and the polynomials have a common root.

These are the types of algebraic-geometric indicators that we are looking for in higher degree and
dimensionality situations.
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2D(1DH)
Roots of a Homogeneous Cubic Polynomial

The Problem
Find roots of a homogeneous cubic polynomial. That is, find [x,w] such that

[ ]

3 2 2 33 3

0

Ax Bx w Cxw Dw

A B B C x x
x w

B C C D w w

+ + +

        =         
        

=
In diagram form, find P

P

P

C

P

= 0

We would like this formulation to be symmetric in the coefficients A,D and B,C in the same manner as the
solution we got for homogeneous quadratic polynomials.

Define Intermediate quadric
We have shown earlier that if we define

2
1

2

2
3

det

det

det

A B
AC B

B C

A B
AD BC

C D

B C
BD C

C D

 
∆ = − =  

 
 

∆ = − =  
 
 

∆ = − =  
 

Then the cubic discriminant is

1 2

2 3

2
det

2

∆ ∆ 
∆ = −  ∆ ∆ 

The diagram form of this matrix is
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C C

So, the discriminant, the determinant of this (with homogeneous scale of 2?) is

C C

C C

Define transformation of parameter space

[ ] [ ]ˆ ˆ

ˆ

a b
x w x w

c d

 
=  

 
=p pT

This will transform cubic C into Ĉ . In diagram form we have

p

p

C

p

CT

T

T

= p̂

p̂

p̂

So

CT

T

T

=Ĉ

Name each coefficient of transformed cubic with hats too. We get the diagram form of each of these four
values by plugging in the appropriate basis vectors to the free indices, which extract the appropriate rows
from the transformation matrix. This gives us the four diagrams:
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Â Ca,b

a,b

a,b

B̂ Cc,d

a,b

a,b

Ĉ Cc,d

c,d

a,b

D̂ Cc,d

c,d

c,d

Or in boringly explicit algebra

( ) ( )
( ) ( )

3 2 2 3

2 2 2 2

2 2 2 2

3 2 2 3

ˆ 3 3

ˆ 2 2

ˆ 2 2

ˆ 3 3

A a A a bB ab C b D

B c a A abB b C d a B abC b D

C a c A dcB d C b c B cdC d D

D c A c dB cd C d D

= + + +

= + + + + +

= + + + + +

= + + +

Solution Strategy
Pick T to make ˆ 0B = . There are lots of choices of T that will make this happen

Conventional choice
(I have adjusted this for the current notation and for homogeneity of parameters)

Make T a ‘parameter translation’

1 0

1δ
 

=  
 

T



2D(1DH) Roots of a Homogeneous Cubic Polynomial

James F. Blinn

138

Plug in the rows of T to the definition to give a formula for Bhat

[ ] 1 1ˆ 1
0 0

A B B C
B

B C C D

A B

δ

δ

        
=         

        
= +

So make

B

A
δ = −

The transformed cubic is now:

3 2 3ˆ ˆ ˆˆ ˆ ˆ ˆ3 0Ax Cxw Dw+ + =
Then apply the identity

( )
( )

3 3 2 2 3

3 3

3 3 3

3 3

3

3 0

T P Q

T P P Q PQ Q

P Q PQ P Q

T PQT P Q

= −
= − + −

= − − −

+ − − =

Then match up with transformed cubic

3 3

2

3 3 3

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

T Ax

PQT Cxw

Q P Dw

=

=

− =

Solve first two for P

3

2 2
2

3 3

ˆˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ
ˆ

ˆ ˆˆ

T x A

Cxw Cxw C
P w

QT Qx A Q A

=

= = =

Plug into third

3

3 2 3

3

ˆ
ˆˆ ˆ

ˆ

C
Q w Dw

Q A

 
 − =
 
 

3
3 6 3

3

ˆ
ˆˆ ˆ

ˆ
C

Q w Dw
Q A

− =

6 3 3 3 6ˆ ˆ ˆˆ ˆ ˆ 0Q A Q ADw C w− − =

Solve this as a quadratic in Q



2D(1DH) Roots of a Homogeneous Cubic Polynomial

James F. Blinn

139

( )2
3 3 3 6

3

2 2 3
3

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ4

ˆ2

ˆ ˆ ˆ ˆˆ ˆ 4
ˆ

ˆ2

ADw ADw AC w
Q

A

AD A D AC
w

A

± +
=

± +=

Take (three) cube roots of this,

2 2 3
3

ˆ ˆ ˆ ˆˆ ˆ 4
ˆ

ˆ2

AD A D AC
Q w

A

± +=

Plug it in to find value of P,

2

3

2 2 3
33

ˆ
ˆ

ˆ

ˆ
ˆ

ˆ ˆ ˆ ˆˆ ˆ 4 ˆ
ˆ2

C
P w

Q A

C
w

AD A D AC
A

A

=

=
± +

Subtract from Q to get values of T.

2 2 3
3 3

2 2 3
33

ˆ ˆ ˆ ˆ ˆˆ ˆ 4ˆˆ ˆ ˆ
ˆ2ˆ ˆ ˆ ˆˆ ˆ 4 ˆ

ˆ2

T P Q

C AD A D AC
x A w w

AAD A D AC
A

A

= −

± += −
± +

2 2 3
3 3

2 2 3
33

ˆ ˆ ˆ ˆ ˆˆ ˆ 4ˆˆ ˆ
ˆ2ˆ ˆ ˆ ˆˆ ˆ 4 ˆ

ˆ2

C AD A D AC
x A w

AAD A D AC
A

A

 
 

± + = − 
± + 

 
 

Then transform back to original coordinate system to get roots of original cubic.

General Choice
Let’s now try what we did for the general solution to the quadratic polynomial. Given an arbitrary first row

a,b we find the proper c,d that makes ˆ 0B = . In algebraic form we want

( ) ( )2 2 2 2ˆ 2 2 0B c a A abB b C d a B abC b D= + + + + + =

A choice for c,d that satisfies this is

( )
( )

2 2

2 2

2

2

c a B abC b D

d a A abB b C

= − + +

= + + +

In diagram form this will be:
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c,d = C

a,b

a,b

The transformation this generates is fine as long as it isn’t singular. Singularity happens if the following is
zero.

c,d =a,b a,b
C

a,b

a,b

a,b C

a,b

a,b

=

In other words, this will give us problems if the a,b we chose was already a root of C. This is similar to the
constraint we had for quadratic polynomials.

Now let’s see what the other coefficients are as functions of a,b

Evaluate B̂

We constructed c,d to make ˆ 0B = . Another way to see this is to plug the diagram for c,d into the diagram

for B̂ .

Cc,d

a,b

a,b

C

a,b

a,b

C

a,b

a,b

=

This is of form

P P

Which is identically zero.

Evaluate Ĉ

To show the power of diagram algebra I’ll first do this using conventional algebra. (This is the first way I
did this one, and it required monumental amounts of fiddling around).

Give names to some intermediate values
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( )
( )
( )

1

2

3

aA bB

aB bC

aC bD

λ
λ

λ

= +

= +

= +

In diagram form we have

1 2

2 3

λ λ
λ λ
 

= 
 

a,b C

So some familiar quantities become:

( ) ( ) ( )

( ) ( )

3 2 2 3

2 2

2 2
1 2 3

1 2 2 1

ˆ 3 3

2 2

2

A a A a bB ab C b D

a aA bB ab aB bC b aC bD

a ab b

a a b b a b

λ λ λ
λ λ λ λ

= + + +

= + + + + +

= + +
= + + +

( ) ( )( ) ( )
( ) ( )( ) ( )

2 3

1 2

c a aB bC b aC bD a b

d a aA bB b aB bC a b

λ λ

λ λ

= − + + + = − +

= + + + = +

Then we can factor Ĉ by

( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( )

( )( )
( )

2 2
1 2 3

1 2 2 3

2 3 1 1 2 2 2 3 2 1 2 3

1 3 2 2 2 2 1 3

1 3 2 2 2 2 1 3

1 3 2 2

1 3 2 2

1 2

2 3

ˆ 2

ˆ

ˆ det

C c cd d

c c d d c d

c a b a b d a b a b

c b b d a a

cb da

ad bc

A

A

λ λ λ
λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ
λ λ

= + +
= + + +

= − + + + + − + + +

= − + + − +

= − + + − +

= − −

= −

 
=  

 

Now let’s do it with diagrams. Plugging the definition of c,d into the definition of Ĉ we get
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Cc,d

c,d

a,b

= C

a,b

a,b

C

a,b

C

a,b
a,b

We can simplify this by applying an epsilon identity. How to pick? If we want to operate on the indicated
epsilon below, the dotted ones (being only one node away) are unlikely to help:

C

a,b

a,b

C

a,b

C

a,b
a,b

Let us, then, try applying an identity to an arc that is farther away. We use the following variant of the
epsilon-delta identity from our catalog:

−=

A B

Cp

B

C

A

p

B

C

A

p

and apply it to the following arcs

C

a,b

a,b

C

a,b

C

a,b

a,b
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We get

C

a,b

a,b

C

a,b

C

a,b

a,b

C

a,b

a,b

C

a,b

C

a,b

a,b

−

The first of these is just the original diagram with a sign flip (an epsilon mirrored). We can move this to
the left side of the equals and get:

C

a,b

a,b

C

a,b

C

a,b
a,b

−=
2 C

a,b

C

a,b

a,b

a,b

a,b

C

This checks with

1 2

2 3

ˆ ˆ detC A
λ λ
λ λ
 

=  
 

since the rightmost diagram fragment is –2 times the determinant of the matrix of lambdas:

Evaluate D̂

Now we’re cookin’. We can do exactly the same thing with the definition of D̂ . The diagram is.
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Cc,d

c,d

c,d

= C

C

a,b
a,b

C

a,b

a,b

C

a,b

a,b

Apply the identity in the same way we did for Ĉ .

C

C

a,b

a,b

C

a,b

a,b

C

a,b

a,b

−
C

C

a,b
a,b

C

a,b

a,b

C

a,b

a,b

Now look at the left hand term. What do you see? Remarkably, this is two identical things on each side of

an epsilon (the middle one of the three). So its… ZERO. And D̂ is just the right hand term. And notice

the factor of Â .

Punchline 1

We have transformed our polynomial into the form:

( )
3 2 3

3 2 3

ˆ ˆ ˆ3

ˆ 3

Ax Cxw Dw

A x Cxw Dw

+ + =

+ +

where
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−1/2
C

a,b

C

a,b

C =

a,b

C

a,b

a,b

C

C

-1

D =

and the previously derived solution simplifies to

2 3
3

2 3
3

4
ˆ ˆ

24
2

C D D C
x w

D D C

 
 

± + = − ± +  
 

Note that the thing under the square root sign is the discriminant of the transformed cubic polynomial.

Another Interesting Transformation
The above discussion dealt with the result of picking an arbitrary (a,b) to generate a nice parameter

transformation. The conventional choice is to pick ( ) ( ), 1,0a b = . Let’s now be a bit more creative.

Let’s pick (a,b) to be a root to the equation

[ ] 1 2

2 3

2
0

2

a
a b

b

∆ ∆    =   ∆ ∆   

The matrix above is the one whose determinant is the discriminant of the original cubic polynomial.

The desired roots are:



2D(1DH) Roots of a Homogeneous Cubic Polynomial

James F. Blinn

146

[ ] 2 1 3 22 , 2a b    = −∆ − −∆ ∆ ∆ −∆ − −∆   
or (alternative notation)

[ ] 3 2 2 12 , 2a b    = ∆ −∆ + −∆ −∆ + −∆ ∆   
By looking at the diagram form of the matrix above we see that this choice of (a,b) means:

C

a,b

C

a,b

= 0

But that means that

0C =
Not bad for starters.

Now what about c,d? Let’s see what happens if we plug c,d into the matrix. Using the tensor diagram
definition of c,d and rotating the diagram sideways we get:

C

a,b

a,b

C C C

a,b

a,b

apply the identity

−=

A
BC

p

BC

Ap

BC

Ap

We get:
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C

a,b

a,b

C C C

a,b

a,b

C

a,b

a,b

C C C

a,b

a,b

−

The first term of this has a ring of three C’s and so is identically zero. Now play with the second term. We
will apply our favorite identity:

−=

A B

Cp

B

C

A

p

B

C

A

p

to the shaded arcs

a,b

a,b

C C a,b

a,b

C C

-1

We get:
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a,b

a,b

C C a,b

a,b

C C

-1

a,b

a,b

C C a,b

a,b

C C

-1

-

The first term is (surprise) minus the diagram we started with. So we have the net result:

C

c,d

C

c,d

=  −1/2
C

a,b

C

a,b

C

a,b

C

a,b

In other words, if (a,b) is a root of the Delta matrix, then so is (c,d). In fact (c,d) is THE OTHER ROOT.

We therefore have transformed our cubic into:

3 3ˆ ˆ 0x Dw+ =
where
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C

a,b

C

c,d

D =

This is, again, much like the way we did it for quadratic polynomials. We have

[ ] 3ˆ ˆ 1x w D = − 

In general, we get three (complex) roots when we take the cube root. This gives us our three roots to the
transformed cubic polynomial. Then, given that we solved a quadratic equation to find (a,b) and (c,d), we

use the matrix composed of these two rows to transform back to the original [ ]x w .

How impressed should we be with this? It has two potential difficulties:

1. The parametric transformation matrix is singular if the quadratic polynomial generated by the
Delta matrix has a double root. This occurs if the cubic polynomial has a double root. Even if the
cubic has two very closely spaced discreet roots, the a,b and c,d might give a very ill conditioned
matrix.

2. If the quadratic has imaginary roots we must deal with complex numbers in the transformation.
Probably not disasterous. This happens when the cubic has 1 (or is it 3) real roots.

It also needs to be analyzed for numerical stability.

But, all in all, it might be useful.
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2D(1DH)
Resultant of a Quadratic and a Cubic

We’ll review a simpler problem first.

Linear and Cubic
Find resultant of

( )
( )

3 2 2 3
3 2 1 0

1 0

, 3 3

,

x w C x C x w C xw C w

x w L x L w

= + + +

= +

C

L

Generate in the solution to the linear equation

[ ] [ ]0 1x w L L= −

Plug into cubic and get

( ) 3 2 2 3
3 0 2 0 1 1 0 1 0 1, 3 3L C C L C L L C L L C L= − + − +R

The diagram is

L
C

L

L

Quadratic and Cubic
Now find resultant of

( )
( )

3 2 2 3

2 2

, 3 3

, 2

x w Ax Bx w Cxw Dw

x w Ex Fxw Gw

= + + +

= + +

C

Q

The non-homogeneous way of doing this would actually treat Q as a cubic with leading coefficient of zero.
Then find resultant of the two cubics. We are not going to do this here since in homogeneous polynomial
land a quadratic is not just a cubic with zero for the leading term. We want to get a diagram that has two-
pronged Q’s and three pronged C’s in it.

Brute force solution
Take linear combos of equations designed to get rid of the x2 term:
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( ) ( ) ( )
( )

( ) ( )

3 2 2 3

2 2

3 2 2 3

2 2

2 2 3

, , 3 3

2

3 3

2

3 2 3

E x w Ax x w E Ax Bx w Cxw Dw

Ax Ex Fxw Gw

AEx BEx w CExw DEw

AExx AFxxw AGxw

BE AF x w CE AG xw DEw

− = + + +

− + +

= + + +
− − −

= − + − +

C Q

Throw out common factor of w. We now have two quadratics that we want to find simultaneous zeroes of:

( ) ( )

2 2

2 2

2 0

3 2 3 0

Ex Fxw Gw

BE AF x CE AG xw DEw

+ + =

− + − + =

Proceed as before, take two linear combinations

First one to get rid of the 2x :

( ) ( )
( ) ( )( )

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )( )

2 2

2 2

2 2

2 2 2

2 2

0 3 2 2

3 2 3

3 2 2 3 2 3 2

3 2 3

2 3 2 3 3 2

BE AF Ex Fxw Gw

E BE AF x CE AG xw DEw

BE AF Ex BE AF Fxw BE AF Gw

BE AF Ex CE AG Exw DE w

BE AF F CE AG E xw BE AF G DE w

= − + +

− − + − +

= − + − + −

− − − − −

= − − − + − −

Second one to get rid of the 2w :

( )
( ) ( )( )

( ) ( )
( )( ) ( )( )

2 2

2 2

2 2

2 2

2

0 2

3 2 3

2

3 2 3

3 2 2 3

DE Ex Fxw Gw

G BE AF x CE AG xw DEw

DEEx DEFxw DEGw

BE AF Gx CE AG Gxw DEGw

DEE BE AF G x DEF CE AG G xw

= + +

− − + − +

= + +
− − − − −

= − − + − −

Throw away w from first and x from second: Now have two linears

( ) ( )
( ) ( )

2 20 6 4 3 3 2

0 3 2 2 3

BEF AF CEE AGE x BEG AFG DE w

DEE BEG AFG x DEF CEG AGG w

= − − + + − −

= − + + − +

Solve these simultaneously by finding the determinant of this, written as a matrix. For prettiness we flip
the sign of the second equation to make the matrix symmetric. We get

2 2

2

6 4 3 3 2
det

3 2 2 3

BEF AF CEE AGE DE BEG AFG

DE BEG AFG DEF CEG AGG
δ

 − − + − +
=  − + − + − 

Multiply out and get:
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( ) ( )
( )( )

( )
( )
( )
( )
( )

( )
( )

2 2 2

2 2

2

2 2

2 2

2

2 2

2

2

6 4 3 2 3

3 2 3 2

6 2 3

4 2 3

3 2 3

2 3

3 2

3 3 2

2 3 2

BEF AF CE AEG DEF CEG AG

DE BEG AFG DE BEG AFG

BEF DEF CEG AG

AF DEF CEG AG

CE DEF CEG AG

AEG DEF CEG AG

DE DE BEG AFG

BEG DE BEG AFG

AFG DE BEG AFG

δ = − − + − + −

− − + − +

= − − +

+ − +

+ − +

− − +

− − +

+ − +

− − +

Now do a bunch of rearranging. This is actually my worksheet using a math-typesetting program. You can
skip to the box below to find out whodunit.

( )
( )
( )
( )
( )
( )
( )

2

2 2 2 2

2 2 2 2

2

2 2 2 2

2

2

6 2 6 3 6

4 2 4 3 4

3 2 3 3 3

2 3

3 2

3 3 3 3 2

2 2 3 2 2

BEF DEF BEF CEG BEFAG

AF DEF AF CEG AF AG

CE DEF CE CEG CE AG

AEG DEF AEG CEG AEGAG

DE DE DE BEG DE AFG

BEGDE BEG BEG BEG AFG

AFGDE AFG BEG AFG AFG

δ = − + −

+ − +

+ − +

− + −

− + −

+ − +

− + −

2 2 2 2

3 2 2 2 2

3 2 3 2 2

2 2 2 2 3

2 4 3 2

3 2 2 2 2

2 2 2 2 2

12 18 6

8 12 4

6 9 3

2 3

3 2

3 9 6

2 6 4

BDE F BCE FG ABEFG

ADEF ACEF G A F G

CDE F C E G ACE G

ADE FG ACE G A EG

D E BDE G ADE FG

BDE G B E G ABEFG

ADE FG ABEFG A F G

δ = − + −

+ − +
+ − +

− + −
− + −

+ − +
− + −
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2 2 2 2 3 2 2 2

2 2 2

2 2 2 2 2

3 2 2 2

2 2 2

2

2 2 3 3

3 2 3

2 4

4 4

6 6 6

12 3 3

8 2 2 2

9

18

12 3 3

6 9

A F G A EG A F G

ABEFG ABEFG ABEFG

ACEF G ACE G ACE G

ADEF ADE FG ADE FG ADE FG

B E G

BCE FG

BDE F BDE G BDE G

CDE F C E G

D E

δ = − −

− + +
− + +

+ − − −
−

+
− + +

+ −
−

2 3

2

2 2 2

3 2

2 2 2

2

2 2 3

2 3

3

2 4

6

12 6

8 6

9

18

12 6

9

6

A EG

ABEFG

ACEF G ACE G

ADEF ADE FG

B E G

BCE FG

BDE F BDE G

C E G

CDE F

D E

δ = −

+
− +

+ −
−

+
− +

−
+

−
Now comes the interesting part. Notice that we can throw out a factor of E from the above. This, then,
gives us our final formulation for the resultant. I’ll now collapse this onto fewer lines and put parentheses
around the coefficients that came from the original quadratic

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( )

2 3 2 2 2 3

2 2 2 2

2 2 2

2 3

, 6 6 2 2 4 3

9 18 6 2

9 6

A G AB FG AC F G EG AD F EFG

B EG BC EFG BD EF E G

C E G CD E F

D E

= − + − − − − +

− + − −

− +

−

R Q C

It is possible to write this as a matrix product:
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( ) [ ]

( )
( )

( )
( )

3 2 2 2 3

2 2 2 2

2 2 2 2

3 2 2 2 3

3 3 2 4 3

3 9 9 3 2
,

3 2 9 9 3

4 3 3 2 3

G FG F G EG F EFG
A

FG EG EFG EF E G B
A B C D

CF G EG EFG E G E F
D

F EFG EF E G E F E

 − − + +
  
  − − +
  =
  − + +
  
  − − + + 

R Q C

Not sure if this buys us anything

Diagram Version
Now let’s try to express R as a tensor diagram. What can we expect the diagram to look like? Since the
expression for R contains coefficients of Q to the third power and coefficients of C to the second power,
we expect that there will be three Q nodes and two C nodes, glued together by the appropriate number of
1D(2DH) epsilons, that is six epsilons. There are a lot of such diagrams that satisfy this property. To get
the correct one we need to think a bit.

Speculation

First recall the diagram for the resultant of two quadratics, which I’ll call here Q and C.

Q

Q

C

C

C

Q

C

Q

−

Now suppose that the quadratic C suddenly became a cubic. It would have one more prong sticking into it.

Q

Q

C

C

C

Q

C

Q

−

Now, what were we looking for in a diagram of the resultant? Three Q’s and two C’s. What do we have
here? Two Q’s, two C’s, and two dangling arcs just waiting to be plugged into by an extra Q. The extra Q
needs an epsilon on each end; I’ll put them in the form that constructs the adjoint of Q (sign wise). We
have:

−
Q

Q

C

C

Q C

Q

C

Q

Q

we can neaten this up to.
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−
Q

Q

C

C

Q C O C OO−

Check

Of course I wouldn’t have brought this up if it didn’t yield results. I’ve checked the value of the diagram
chunks with a special purpose symbolic algebra program I’ve written. The results for the three chunks are:

Q

Q
1∆ =

( )2
1 2 F EG∆ = −

C

C

Q

j

k
l

m

n o

p

i

2∆ =

( ) ( ) ( ) ( ) ( ) ( )( )2 2
2 2 AC G AD F B G BC F BD E C E∆ = − − + + −

C O C OO3∆ =

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )

2 3 2 2 2
3

2 2 2 3 2 2

2 2 2 2

2 3

6 2 4 2

8 10 8 2 4

8 6

A G AB FG AC EG F G AD EFG

B EG F G BC EFG F BD E G EF

C E G EF CD E F

D E

∆ = − + + −

+ + + − − + +

+ + −

+

We expect to have, then,

( ) 1 2 3, = −∆ ∆ − ∆R Q C

( ) 3 1 2, + ∆ = −∆ ∆R Q C
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So we form:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )

2 3 2 2 2 3
3

2 2 2 2

2 2 2

2 3

2 3 2 2 2

2 2 2 3 2 2

2 2 2 2

2 3

, 6 6 2 2 4 3

9 18 6 2

9 6

6 2 4 2

8 10 8 2 4

8 6

A G AB FG AC F G EG AD F EFG

B EG BC EFG BD EF E G

C E G CD E F

D E

A G AB FG AC EG F G AD EFG

B EG F G BC EFG F BD E G EF

C E G EF CD E F

D E

+ ∆ = − + − − − − +

− + − −

− +

−

+ − + + −

+ + + − − + +

+ + −

+

R Q C

( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )

2 3 2 3
3

2 2

2 2 2 2

3

2 2 2 2 2

3

2 2 2 2

2 2 2 2 2

2 2

2 3 2 3

,

6 6

6 2 2 4

2 4 3 2

9 8

18 10 8

6 2 2 4

9 8

6 6

A G A G

AB FG AB FG

AC F G EG AC EG AC F G

AD F EFG AD EFG

B EG B EG F G

BC EFG BC EFG F

BD EF E G BD E G EF

C E G C E G EF

CD E F CD E F

D E D E

+ ∆ = − +

+ −

− − + +

− − + −

− + +

+ + − −

− − + +

− + +

+ −

− +

R Q C

( ) ( )
( )

( )
( )
( )

( )

2 2

3

2 2 2

3

2 2

2 2 2

, 8 8

8 8

8 8

8 8

8 8

8 8

AC F G EG

AD F EFG

B EG F G

BC EFG F

BD EF E G

C E G EF

= + − +

+ −

+ − +

+ −

+ − +

+ − +

R Q C
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( ) ( )
( )

2
3

2 2

, 8 F EG

ACG ADF B G BCF BDE C E

− ∆ = − −

− − + + −

R Q C

( ) 3 1 2, 2− ∆ = − ∆ ∆R Q C

So… There seems to be an extra factor of 2 here. I’m not sure if this is right. But either way, we have our
diagram, perhaps with an extra scalar of 2 on the first term.

Now try diagrams

Deriving this via diagrams from first principles is a bit of work. Here’s a start, but unfinished…

( ) ( ), ,E x w Ax x w− =C Q

C

xw

xw xw

10

10

Q −
C

10

10 10

xw

xw

Qxw 01

Now play with a piece of the second term

C

10

10

10

xw

01

=

C

10

10

10

xw

01 C

10

10

10

xw

01

-

So the desired expression is:
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C

xw

xw xw

10

10

Q −

xw

xw

Q + 10 xw
C

10

10 xw

C

10

10 01

xw

xw

Q

Play with first term:

=

10

10

Q

xw

xw

C xw

10

10

Q

xw

xw

C xw

10

10

Q

xw

xw

C xw

10

10

Q

xw

xw

C xw

10

10

Q

xw

xw

C xw

−

− +

Move the first term over the equal and rearrange, note that terms 2 and 3 on the right are equal (vertical flip
doesn’t change sign since two epsilons).
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=

10

10

Q

xw

xw

C xw

10

10

Q

xw

xw

C xw−

− 2

10

10

Q

xw

xw

C xw

10

10

Q

xw

xw

C xw+

Now plug this into the desired expression:

+ 10 xw
C

10

10 01

xw

xw

Q− 2

10

10

Q

xw

xw

C xw

10

Q

xw

C xw+

10 xw

NOW we can throw away the common factor of w in the guise of
10 xw

and have the result of the
lowered degree diagram be:

+
C

10

10 01

xw

xw

Q− 2

10

Q

xw

C xw

10

Q

xw

C xw+

We then take the resultant of this quadratic with the original quadratic Q.

xw xw

Q

This generates some stuff…. (exercise for reader? Heh, heh)
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2D(1DH)
Resultant of Two Cubics

The Problem
Find resultant of two cubics

( )
( )

3 2

3 2

3 3

3 3

f s As Bs Cs D

g s as bs cs d

= + + +

= + + +

Or in matrix form

( ) ( )3 2 3 3
1

3 3

A a

B b
s s s f s g s

C c

D d

 
 
   =      
 
 

Technique using 4-vectors
This will look a lot like the similar derivation for two quadratics.

From Sederberg we have that the resultant is the determinant of the 3x3 matrix formed by

( ) ( ) ( ) ( )f s g t f t g s

s t

−
−

So form the quantity

( ) ( ) ( ) ( )

[ ] [ ]

3 3

2 2
3 2 3 23 3

1 3 3 1 3 3
2 3

1 1

f s g t f t g s

A at t

B bt t
s s s a b c d s s s A B C D

C ct t

D d

− =

      
      
         −         
      
         

3

2
3 2

3

2
3 2

3 3

3 3 3 3 3 3
1

3 3 3 3 3 3

3 3 1

3 3

3 3 3 3 3 3
1

3 3 3 3 3 3

3 3 1

Aa A b A c Ad t

Ba B b B c Bd t
s s s

Ca C b C c Cd t

Da D b D c Dd

Aa Ba Ca Da t

A b B b C b D b t
s s s

A c B c C c D c t

Ad Bd Cd Dd

  
  
   =     
  
    
  
  
   −     
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( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )

3

2
3 2

0 3 3

3 0 9 3
1

3 9 0 3

3 3 0 1

Ab Ba Ac Ca Ad Da t

Ba Ab Bc Cb Bd Db t
s s s

Ca Ac Cb Bc Cd Dc t

Da Ad Db Bd Dc Cd

=

− − −   
   − − −         − − −
   − − −      

This anti-symmetric matrix is of the form:

0

0

0

0

p q r

p s t

q s u

r t u

− 
 − − 

− 
 − − 

This looks a lot like the 3D(4DH) calculation of a 3D line through two 3D points.

For a matrix formed in this way we have the identity

( ) 0pu qt rs− + =

Matrix is rank 2 since eigenvalues are solutions to

( ) ( )24 2 2 2 2 2 2 0t u s p q r pu qt rsλ λ+ + + + + + + − + =

Thus we have two zero eigenvalues.

The matrix can be seen as the sum of a symmetric 3x3 matrix shifted in two directions, corresponding to
multiplication by s and –t.:

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0 0

p q r p q r

p s t p q r q s r t

q s u q s r t r t u

r t u r t u

− −     
     − − − − − + −     = +

− − − −     
     − − − −     

So when we divide by s t− we get the result:

2

2 1 0

1

p q r t

s s q s r t t

r t u

 − 
    − + − =    
 −    

The determinant of this matrix is the resultant.

( ) ( ) ( )2 2 2, 2f g pu s r qtr r s r t p q u= + + − + − −R

( ) 2 2 2 3, 2f g psu pru pt qrt q u r s r= + − + − − −R

where
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( )
( )

( )
( )
( )

3

3

9

3

3

p Ab Ba

q Ca Ac

r Ad Da

s Bc Cb

t Db Bd

u Cd Dc

= −

= −
= −
= −

= −

= −

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )

2 2 2 3

22

22

2

3

, 2

3 9 3

3 3

3 3

2*3 3

3 3

9

f g psu pru pt qrt q u r s r

Ab Ba Bc Cb Cd Dc

Ab Ba Ad Da Cd Dc

Ab Ba Db Bd

Ca Ac Ad Da Db Bd

Ca Ac Cd Dc

Ad Da Bc Cb

Ad Da

= + − + − − −

= − − −

+ − − −

− − −

+ − − −

− − −

− − −

− −

R

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

( )

2 2 2 3

4

2

23

2

23

22

3

, 2

3

3

3

2*3

3

3

f g psu pru pt qrt q u r s r

Ab Ba Bc Cb Cd Dc

Ab Ba Ad Da Cd Dc

Ab Ba Db Bd

Ca Ac Ad Da Db Bd

Ca Ac Cd Dc

Ad Da Bc Cb

Ad Da

= + − + − − −

= − − −

+ − − −

− − −

+ − − −

− − −

− − −

− −

R

Diagram Speculation

Since the coefficients of both f and g appear three times each, we expect the diagram to have three f nodes
and three g nodes, connected with nine epsilons.

Before, when we went from the resultant of a Quadratic and Quadratic to the resultant of a Quadratic and
Cubic we had a good guess by taking the next-lower result and sticking on the proper number of extra
prongs. Let’s see if that works here: For a quadratic and a cubic the resultant is
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−
Q

Q

C

C

Q C O C OO− 2

Turn Q into a cubic:

−
Q

Q

C

C
C OO− 2 Q C O

Now connect these dangling arcs to a third copy of C.

+ 2
Q

Q C

C
QC −

C

O

O

C

O

C

Is this right? Needs work here.

Quartic Discriminant
Given a formula for the resultant of two cubics, we can find the discriminant of a quartic easily. The
quartic is defined as:

( ) 4 3 2 2 3 4, 4 6 4f x w Ax Bx w Cx w Dxw Ew= + + + +

The discriminant is the resultant of the polynomial and its derivative. In the homogeneous case we can
instead take the resultant of the two derivatives of the polynomial:

( )
( )

3 2 2 3

3 2 2 3

, 4 12 12 4

, 4 12 12 4

x

w

f x w Ax Bx w Cxw Dw

f x w Bx Cx w Dxw Ew

= + + +

= + + +

We can throw out the factors of 4 and get that we want the existence of common roots to:

3 2 2 3

3 2 2 3

3 3 0

3 3 0

Ax Bx w Cxw Dw

Bx Cx w Dxw Ew

+ + + =
+ + + =

In diagram terms, these two cubics are:



2D(1DH) Resultant of Two Cubics

James F. Blinn

164

fQ

1,0

=

fC

0,1

=

Putting this into the first chunk of the resultant expression we have:

f

f f

f
ff

1,0

1,0 1,00,1 0,1

0,1

Now, getting very speculative, and extrapolating from the cubic case, we might get a diagram for the
discriminant of f by simply connecting all 1,0 and 0,1 nodes with epsilons… It would look something like:

f

f f

f
ff

Need to check this…



2D(1DH) Roots of a Quartic

James F. Blinn

165

2D(1DH)
Roots of a Quartic

The Problem
Find roots to

( ) 4 3 2 2 3 4, 4 6 4x w Ax Bx w Cx w Dxw Ew= + + + +F

We can think of this as a 2x2x2x2 hypercube of coefficients. The best we can do with matrix notation is as
a 2x2 matrix of 2x2 matrices:

( )

[ ] [ ]

,x w

A B B C

B C C D x x
x w x w

w wB C C D

C D D E

=

     
                                       

F

The diagram form of this is simply

P

P

P

P

F

Define transformation of parameter space

[ ] [ ]ˆ ˆ

ˆ

a b
x w x w

c d

 
=  

 
=p pT

This will transform cubic C into Chat. In diagram form we have

p

p

F

p
p^

p^

F

p^T T

T

=

p
p^

T

So
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F^ F

T

T

T

=

T

Name each component of transformed cubic with hats too. We get the diagram form of each of these four
values by plugging in the appropriate basis vectors to the free indices, which extract the appropriate rows
from the transformation matrix. This gives us the four diagrams:

Â

a,b a,b

a,b

F

a,b

B̂

a,b a,b

a,b

F

c,d

Ĉ

c,d a,b

a,b

F

c,d

D̂

c,d c,d

a,b

F

c,d

Ê

c,d c,d

c,d

F

c,d
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For any given first row (a,b) of the transformation, find the second row (c,d) by picking

c,d =

a,b

a,b

F

a,b

The transformation this generates is fine as long as it isn’t singular. Singularity happens if the following is
zero.

c,d =a,b a,b
a,b

a,b
a,b

a,b

a,b

=F

a,b

F

a,b

In other words, this will give us problems if the a,b we chose was already a root of C.

Now let’s see what the other coefficients are as functions of a,b

Bhat

We constructed (c,d) to make this zero. Another way to see this is to plug the diagram for c,d into the
diagram for Bhat.

=

c,d a,b

a,b

F

a,b

a,b

a,b

F

a,b

a,b

a,b

F

a,b

This is of form

P P

Dhat

We would like to make Dhat zero too. It’s definition is:
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=

c,d c,d

a,b

F

c,d

a,b

a,b

F

a,b a,b

F

a,b

a,b

F

a,b

a,b

a,b

F

a,b

Apply following identity to the shaded region above;

−=

A B

Cp

B

C

A

p

B

C

A

p

Get:
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-

a,b

a,b

F

a,b a,b

F

a,b

a,b

F

a,b

a,b

a,b

F

a,b

a,b

a,b

F

a,b a,b

F

a,b

a,b

F

a,b

a,b

a,b

F

a,b

Can we work with this to make a condition for (a,b) that makes Dhat=0?

Needs work

Solution for 2 2x w  

If we can accomplish the above we have reduced the quartic to

( ) 4 2 2 4ˆ ˆˆ ˆ, 6x w Ax Cx w Ew= + +F

We then can solve this as a quadratic for 2 2,x w .

The signs of the roots of this quadratic determine how many roots we get for the quartic. Possible

combinations for signs of
2

2

x

w
are

Roots of quadratic Roots of quartic

None none

Double root: negative none

Double root: zero quadruple

Double root: positive Two doubles

Distinct roots: both negative none

Distinct roots: negative, zero One double

Distinct roots: negative, positive Two distinct

Distinct roots; zero, positive Double and two single

Distinct roots, both positive Four distinct
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3D(2DH)
Quadratic Curves

Definition
A second order (quadratic) plane curve has the equation:

Ax Bxy Cy

Dxw Eyw

Fw

2 2

2

2

2 2

0

+ +
+ +

+ =
All homogeneous points x y w that satisfy the equation lie on the curve. This can be written as a
matrix:

[ ] 0T

A B D x

x y w B C E y

D E F w

   
    = =   
      

pQp

A tensor diagram looks like:

p Q p = 0

I am going to examine such curves both for analysis (given Q find its geometric properties) and for
synthesis (given desired geometric properties, construct Q)

The Catalog
How many different curves can this generate? This, of course, depends on what you mean by different. In
Euclidean geometry we are used to the idea that all equilateral triangles are the same shape, no matter how
they are placed or oriented. Likewise, in projective geometry, an ellipse and a hyperbola are the same
shape. In fact, geometry can be described as the study of those properties of a shape that remain unchanged
even if it's subjected to some transformation. Different “don’t care” types of transformations generate
different geometries. I am going to deal with two-dimensional homogeneous coordinates with the
transformation being the standard homogeneous projective transformation representable by a 3×3 matrix.
Any two shapes that can transform into each other via such a matrix are counted as the same shape.

It turns out that there are exactly 5 unique quadratic curves. Why? As you might expect, it can generate
conic sections. But all conic sections are really the same shape, so that’s 1. Anything else? Remember, two
shapes are considered the same if there is some homogeneous transformation (possibly containing
perspective) that can change one into another.

To answer the question I will invoke several standard results from matrix theory. We can geometrically
transform the curve by multiplying its Q matrix by an arbitrary 3x3 transform:

TQT Qt = ′

where T is the inverse of the matrix that transforms points.

It is always possible to find a transformation that turns Q into a diagonal matrix. This just involves finding
the eigenvectors of Q. Since Q is symmetric, all the eigenvalues will turn out to be real numbers, and all
the eigenvectors will be perpendicular to each other. So we can make up the transformation T by stacking
up the eigenvectors. What we get is



3D(2DH) Quadratic Curves

James F. Blinn

171

V

V

V

V

V

V

1

2

3

1

2

3

1

2

3

0 0

0 0

0 0

L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

Q

λ
λ

λ

Then just multiply on the right by the inverse of the matrix formed by the column of V's and you get Q
transformed into a diagonal matrix with the eigenvalues on the diagonal. This is why eigenvectors are so
interesting. They allow you to see the essence of a matrix without getting confused by the coordinate
system it's in.

We can further simplify this by applying a scaling transformation that will scale the diagonal elements to be
either +1, −1, or 0. (Notice that you can't change the sign of an eigenvalue even with a mirror
transformation, since the transformation is multiplied in twice.) Thus the only types of second order curves
are those that represent unique combinations of these values on the diagonal. Only one of them generates a
true non-degenerate curve, the others are singular and represent such things as the products of two lines.
The five possible combinations along with the eigenvalue signs are:

Signs of
eigenvalues

name Homogeneous
example

Projects to picture

+++
---

(N)Null 2 2 2 0x y w+ + = 2 2 1X Y+ = −

++-
--+

(C)Conic 2 2 2 0x y w+ − = 2 2 1X Y+ =

++0
–-0

(P)Single Point 2 2 0x y+ = 0, 0X Y= =

+-0

(L2)Two
distinct lines

2 2 0x y− = ( ) ( ) 0X Y X Y+ − =

+00

(L1)Double
line

2 0x = 2 0X =
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Rank and Invariants of a Symmetric 3x3 Matrix
How do we find this, given an arbitrary matrix, which of these we have? We want to find the signs of the
eigenvalues. The eigenvalues themselves come as roots to the characteristic equation formed from the
determinant

{ }det λ−Q I

Explicitly, this gives us

det 0

A B C

B D E

C E F

λ
λ

λ

− 
 − = 

−  

( )
( )

( )

3

2

2 2 2

2 2 22

0

A D F

E DF B AD C AF

ADF BEC B F C D E A

λ
λ

λ

−

+ + +

+ − + − + −

+ − − −

=
Each coefficient can be represented in diagram notation. The Rank is 3 minus the number of these
(successively) that are zero. Expressing this in diagram notation shows us the following. The determinant
is:

λ−Q I

λ−Q I

λ−Q I

We learned how to take determinants of sums of matrices in an earlier chapter. We get eight terms all
together, but a little though shows that these boil down to the following, which looks kind of like the cube
of a binomial:

λ−Q I

λ−Q I

λ−Q I

Q

Q

Q

I

Q

Q

I

I

Q

I

I

I

−3λ +3λ2 −λ3

=
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Each of the four diagrams is the diagram representation of the appropriate coefficient in the characteristic
equation. We can recognize them in more conventional language as (a constant multiple times):

1. The determinant of Q

2. The trace of the adjoint of Q

3. The trace of Q

4. A constant

These are invariant properties of Q under Euclidean 3x3 transformation matrices (pure 3D rotations). For
the more general case of general 3x3 matrices, only their sign (or zeroness) is invariant.

Degenerate Curves
In this section I will relate the properties of the three degenerate curves to their representation in diagram
notation. This will include extraction of the geometric properties as well as construction of Q given some
desired properties. I will also talk about stationary transforms. These are nonsingular transformation
matrices that leave the shape of the object unchanged, while moving around all the other points that are not
on the object. (These will be useful when we consider intersections of quadratics with other shapes.)

We start with the simplest.

Double Line
This is doubly degenerate. Q has two zero eigenvalues. The adjoint of Q is all zeroes.

Construction

Given the vector for the desired line,

a

b

c

 
 =  
  

L

Form:

[ ]
2

2

2

T

a a ab ac

b a b c ab b bc

c ac bc c

  
  = = =   
     

Q LL

The diagram looks like

=Q L L

Analysis

Given Q how do we find L? Note that each row or column contains the three components of L times a
uniform homogeneous factor. Any of a,b,c might be zero however. To ensure that we don’t get nailed by
this we must take the row or column with largest absolute length.

Stationary transform

Any transformation T that has L as one of its eigenvectors will leave L unchanged.
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Two Distinct Lines
Singly degenerate. The adjoint of Q is doubly degenerate.

Construction

Given the vectors for the lines,

1 2,

a p

b q

c r

   
   = =   
      

L L

form:

[ ]1 2
T

a ap aq ar

b p q r bp bq br

c cp cq cr

   
   = =   
      

L L

Then must symmetrize by adding it to its transpose

[ ]1 2 2 1

2

2

2

T T

a ap bp aq cp ar

b p q r bp aq bq cq br

c cp ar cB br cr

+ +   
   = + = = + +   

+ +      

Q L L L L

Tensor diagram is

= +Q L1 L2 L1L2

Stationary Transform

Any transformation matrix that has L1 and L2 as eigenvectors will, when applied to Q, leave Q unchanged
(except for a homogeneous global scale). Here’s why. The transform T satisfies:

1 1 1

2 2 2

λ
λ

=
=

TL L

TL L

So apply T to the diagram for Q

=

+L1 L2T T L1L2T T

L1 L2

λ1 λ2
L2 L1

λ2 λ1+

=

QT T

Q

=
λ1 λ2
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Analysis

Given the above “internal structure” we can construct the adjoint of Q. Recall this is

Q

Q

L1 L2

L1 L2

L1 L2

L2 L1

L2 L1

L1 L2

L2 L1

L2 L1

+

+ +

Two of these are zero, and the other two are equal. In fact they are the outer product of the point of
intersection of the two lines. So our first analysis is to extract this [x,y,w] in a manner similar to the line
extraction process for the doubly degenerate line. We will name this:

[ ]c x y w=P

Given this, we still need to find the L vectors. We build a general transformation that puts Pc at the origin
in a “homogeneously safe” manner. This means that there are no singularities if, say, Pc is at infinity.

To do this we select two out of the three following points:

[ ]
[ ]
[ ]

0

0

0

x

y

w

w y

w x

y x

= −

= −

= −

P

P

P

Again, we select the two points that are largest in absolute magnitude. (Better way is to discard the point
containing the two x,y,w coordinates that are smallest in magnitude.) This gives us three points, Pc and the
two we selected, that are guaranteed to be nonzero, no matter what.

Stacking these up into a transformation and applying to Q gives

[ ] ˆ

ˆ

0
ˆ0

0 0 0

X

Y X Y c

c

X X X Y X c

Y X Y Y Y c

c X c Y c c

A B

B D

 
  = 
  

 
  = 
  

 
  = 
  

P

P Q P P P Q

P

P QP P QP P QP

P QP P QP P QP Q

P QP P QP P QP

Q

This is a degenerate quadratic consisting of two lines that intersect at the origin
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Solve

[ ]
2 22 0

A B x
x y

B D y

Ax Bxy Dy

    =   
   

+ + =

Solution pairs are

[ ] 2 2,x y B B AD A D B B AD   = + − − − + −   

We know that the solutions are real because the eigenvectors of the original Q were 0+-. This means that
the determinant of the 2x2 matrix is negative (AD-B^2) or that the quantity under the root is positive. So,
the two lines in Qhat space are formed from the two cross products

[ ] 2
1

2

ˆ 0 0 1

0

B B AD A w

A

B B AD

 = × + − − 
 
 

= + − 
 
  

L

[ ] 2
2

2

ˆ 0 0 1

0

D B B AD w

B B AD

D

 = × − + − 
 + −
 

=  
 
  

L

Now to get these back to Q space we must multiply by the adjoint of what got us here. This is formed from
the cross products of the rows of the original matrix.

*

X

Y Y c c X X Y

c

   
   = × × ×   
      

P

P P P P P P P

P

So we have

*

2
1

0

X

Y

c

A

B B AD

  
  = + −  
      

P

L P

P

* 2

2

0

X

Y

c

B B AD

D

 + − 
  =   
      

P

L P

P

There is some more simplification that can be done here that I haven’t finished.
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The Single Point
The eigenvalues are ++0 or --0

Construction

Take any two distinct lines L1 and L2 through the given point. Form the matrix:

1 1 2 2
T T= +Q L L L L

Tensor diagram

= +Q L1 L1 L2L2

Note that multiplying a point P by this matrix gives us:

( ) ( )2 2

1 2
T = ⋅ + ⋅PQP P L P L

So this will give zero iff P is on both lines L1 and L2.

Note that the matrix Q is not unique. For a given P there are many different (and not just by a
homogeneous scale) matrices Q that have only P as a solution.

Analysis

At first it might look like Q is doubly degenerate (it’s the sum of two doubly degenerate matrices). But if
you construct the adjoint you find:

L1 L1

L1 L1

L1 L1

L2 L2

L2 L2

L1 L1

L2 L2

L2 L2

+

+ +

The first and last terms are zero, the second and third are just the outer product of P with itself. In other
words we can recover P by extraction of the longest row or column of the adjoint of Q.

The Conic Section
For conic construction hints see the chapter on the Theorem of Pappus.

For analysis hints I first want to discuss polar lines and points to a quadratic.

Polar Lines and Points
Start with a quadratic curve Q

Q
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Point P1

Pick any point P1 not on Q. Form the line P1 Q. This is called the polar line to P1

QP1
= L1

Geometrically, this is the line connecting the two points of tangency from P1 to Q

P1 Q = L1

Q

P1

Point P2

Pick any other point P2 on this polar line. Then

QP1 P2 = 0

Now construct the polar line to P2 in a similar manner; it’s the line connecting the points of tangency from
P2 to Q. If P2 is on the polar line of P1 then P1 is on the polar line of P2. Geometrically it looks like
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P1 Q = L1

P2 Q = L2

Q

P1

P2

The proof of this is just associativity on the tensor diagram:

QP1 P2

= 0QP1 P2

QP1 P2

L1

L2

= 0

= 0

Point P3

Now construct P3 as the intersection of the two polar lines: P1 Q and P2 Q. Diagrammatically:

QP1

QP2

P3=

If we have P1 and P2 not on Q, what about P3? Calculate:



3D(2DH) Quadratic Curves

James F. Blinn

180

=

P3 Q P3

Q

QP1

QP2 Q P1

Q P2

Apply the identity

=

Q

Q

Q

detQ

and get:

P1

P2

detQ

Q P1

Q P2

Apply epsilon/delta and get

P1

P2

detQ

Q P1

Q P2

P1

P2

detQ

Q P1

Q P2

−

The second term is zero from above construction so we have, finally:
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=

P3 Q P3

QP1

QP2

P1

P2

detQ

Now what does this mean? If detQ is negative it means that points on the inside of the conic give a
negative PQP and points on the outside give positive PQP. This means that

If P1 and P2 are outside the conic, then P3 is inside

A similar argument holds if detQ is positive.

Now for the kicker. Form the polar line of P3 as the product 3 3=L P Q . Then we have the diagram

=

P3

QP1

QP2

QL3 =

Q

=

P1

P2
detQ

In other words, the polar line of P3 is the line through points P1 and P2. Geometrically this is:
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P1 QP3 Q

P2 Q

Q

P1

P2

P3

This also gives us a purely geometric construction for the polar line of a point inside a conic. Take any line
through the point. This hits the conic at two points. Take the tangents at those points and plot their
intersection. As the line through the inside point changes, the intersection of the tangents traces out its
polar line.

Standard Position
The above discussion gives us a way to construct a transformation matrix that diagonalizes Q.

1. Pick any point P1 not on Q

2. Pick any point P2 on the polar line P1Q but not on Q

3. Construct P3 as above.

4. Stack these points into a matrix

This transforms Q as follows:

1

2 1 2 3

3

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

1 1

2 2

3 3

0 0

0 0

0 0

T T T

T T T

T T T

T

T

T

   
    =   
      

 
 

= 
 
  
 
  = 
 
 

P

P Q P P P

P

PQP PQP PQP

P QP P QP P QP

P QP P QP P QP

PQP

P QP

P QP
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Dual form of Polars
There is a dual form for the above discussion, basically swapping the words “point” and “line”.

Given a line L and a quadratic Q, we form the dual point by
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3D(2DH)
The Theorem of Pappus

The Theorem of Pappus is an old chestnut in the field of projective geometry. Any algebraic framework
needs to be able to address it.

Statement of Theorem

Conventional form
Start with six points that lie on a conic section: A…F

B

A

F
E

D

C

P1

P2

P3

Construct Line AB, and Line DE, and their intersection P1

Construct Line BC, and Line EF, and their intersection P2

Construct Line CD, and Line FA, and their intersection P3

Then Points P1, P2, P3 are collinear

There is a dual form of this formed by swapping the words “line” and “point” in the above statement.

Statement in Diagram form
The above is a bit tricky to keep track of. The diagram form, thought, is quite pretty:

Given six points A…F on a conic section, then
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B D

A

D

F

E

C

B

EA

C F

= 0

Defining a Conic Section
In order to prove the theorem we must first work out what it means (in diagram form) for 6 points to lie on
a conic section. In general five points A,B,C,D,E will uniquely determine a conic section. The
conventional technique to generate the six elements of Q from this involves finding six determinants of 5x5
matrices. Let’s try something different.

Let’s just consider the first 4 points. We can construct a degenerate conic through these points that is the

union of the line AB and the line CD. Call this 1Q .

B

A

D

C

Q1

The diagram for the matrix of 1Q is

B

A C

D C

D A

B
+

Now construct the degenerate conic through the points that is the union of the line AC and the line BD.

Call this 2Q .
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B

A

D

C

Q2

The diagram for the matrix of 2Q is

C

A B

D B

D A

C
+

Now consider all linear combinations of quadratics Q1 and Q2.

1 2α β= +Q Q Q

Points ABCD are all on both Q1 and Q2, so all four points are on the more general quadratic Q. Now let’s

pick the parameters ( ),α β that generate the particular Q that also passes through point E. That is, we

want

( )
( ) ( )

1 2

1 2

0

T T

T T

α β

α β

= +

= +

=

EQE E Q Q E

EQ E EQ E

The solution is:

2

1

T

T

α
β

=

= −

EQ E

EQ E

In diagram form we have, after some straightforward merging and mirroring/sign flipping:

C

A B

D

E E

2

α =

B

A D

C

E E

2

β =
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Now let’s generate the diagram for the whole matrix Q.:

+

B

A C

D

C

A B

D

E E

2

C

D A

B

C

A B

D

E E

2

+
C

A B

D

B

A D

C

E E

2

B

D A

C

B

A D

C

E E

2

+

Arithmetically this is a lot better than taking six 5x5 determinants. Close scrutiny shows that it requires

1) four triple products, (ACE), (BDE), (ABE), (CDE)

2) four cross products; (AB), (CD), (AC), (BD)

plus some arithmetic glue. It also affords us some control of numerical error. This is because we can
permute the usage of the five points in this expression and still get the same quadratic curve Q. So we
might figure out which four selections of three points to take the triple product of that generates the least
round off error.

Proof of Pappus
Given the form for the conic through five points ABCDE, the condition of a sixth point F being on the
conic arrived at by simply plugging F into the above diagram. The first two and second two subdiagrams
wind up being equal, so the net expression is

+

B

A C

D

C

A B

D

E E

4

C

A B

D

B

A D

C

E E

4
F F F F

Now compare this with the original statement of Pappus. We see that a massive orgy of epsilon/delta is in
order. Here we go.
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Apply Epsilon/Delta to original diagram:

A

F C

B
-

B D

D E

EA

C F

B

A

D

F

A

C

D

E

C

B

E

F

The four terms can be rubber stamped:

= =

D

D

E

C

F

A D

D

E

C

F

A D

D

E

C

F

A

D

A

D

F

E

C

-

= =

B

F

C

E

A

B B

F

C

E

A

B

-

B

C

E

B

A

F

B

F

C

E

A

B

= =

A

D

B

C

F

A A

D

B

C

F

A

-

B

A

D

F

A

C

A

D

B

C

F

A
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= =

D

C

E

B

E

F D

C

E

B

E

F

-

D

E

C

B

E

F

D

C

E

B

E

F

Collecting these together we get the net diagram of Pappus equal to

D

D

E

C

F

A

−

B

F

C

E

A

B A

D

B

C

F

A

+

D

C

E

B

E

F

This is presumably the same as the expression we got by plugging F into our formula for Q. Since I did
these two halves of the proof at two different times, there is of course, a permutation of the letters
ABCDEF necessary to make them actually equal. But you get the idea.
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3D(2DH)
Intersecting A Line with a Quadratic

The Problem
Given line L and quadratic curve Q, find the common points in a homogeneously safe way.

Way 1
Find two points on L. Any other point on L is a linear combination of these. (We are basically
parametrizing the implicit curve for L)

[ ]
1 2

1

2

α β

α β

= +

 
=  

 

P P P

P

P

Then plug this into find points on Q

[ ]

[ ]

1 1 1 2

2 1 2 2

0

0

T T

T

T T

A B

B C

α
α β

β

α
α β

β

   
= =   

   
   

= =   
   

P QP P QP
PQP

P QP P QP

Then solve this homogeneous equation for alpha, beta.

B>0 2C B B AC − + −  , 2B B AC A + − − 

B<0 2B B AC A − − −  , 2C B B AC − − − 

Discriminant is

(DIAGRAM) figure out signs/factors

call this Delta

Solutions are

[ ] 1 0

0 1

B A

C B
α β

−   
= + ∆   −   

Plug into original equation for P to get coordinates of points.

Finding points on L
Given L how can we find two distinct points on it? Form the anti-symmetric matrix from these
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0

0

0

c b

c a

b a

− 
 − 
 − 

Diagrammatically, this is

L

Each row/column of this matrix is a point on L.

How to pick which two to use? To avoid degeneracies we want to pick two that cannot all be zeroes. Find
the absolute maximum of (a,b,c) and pick the two points that contain that coordinate. To visualize this,
project abc onto an origin centered cube. Then each face of the cube represents a situation where one of the
coordinates is greater than the other two. Each face-pair represents a choice for which two points to use..

Possible problems
What if one or both of the points so chosen is on Q. Are we in trouble? The worst-case scenario: the line
has a=b=0 (the line at infinity). The matrix is

0 0

0 0

0 0 0

c

c

 
 − 
  

[ ]
[ ]

1

2

0 1 0

1 0 0

=

= −

P

P

Our algorithm picks the first two rows. Each of these is a point at infinity. So far so good. Now what if Q
passes thru these two points. This would happen if the Q matrix were:

0

0

B C

B E

C E F

 
 =  
  

Q ( )det 2B EC BF= −Q

The three unique components of the

[ ]

1 1

1 2

2 2

0

0 1

0 1 0 0 0

0

0

T

T

T

B C

B E B

C E F

=
−   

   = = −   
      

=

P QP

P QP

P QP

The quadratic equation is:

2 0Bαβ− =

and the two homogeneous solutions are:
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[ ] [ ] [ ]1 0 , 0 1α β =

No problem

Way 2 - Better?
Pick one point P1 on L and not on Q. (Expand on how later.)

Find polar line of P1 with respect to Q. Intersect this with L to generate second point on L.

2 1= ×P P Q L

Diagram

L

P Q

Then when we form the coefficient matrix for the quadratic equation

1 1 1 2

2 1 2 2

T T

T T

 
 
  

P QP P QP

P QP P QP

we get the diagrams

2 1
TP QP =

L

Q
Q P1

P1

= 0

And

2 2
TP QP =

Q
L

QP1 L

Q P1

Apply identity

Q

Q

P1
L

Q P1

-1/2

L

Now apply epsilon delta:
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Q

Q

P1
L

Q P1

-1/2

L

Q

Q

P1 L

Q P1
-1/2

L

-

The second of these is zero since P is on L. Neatening up the first we get:

2 2
TP QP =

P1

L

Q P1

-1/2

Q

Q

L

Define

L

1/2

Q

Q

L
D =

So, the quadratic equation becomes.

( )[ ]1 1

1 0
0

0
T

D

α
α β

β
   

=   −   
P QP

Can throw out the common factor of P1QP1

Solution is:

2 2

, 1

D

D

α β
α β

=

= ± =

Final points are
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1 2

1 2D

α β= +

= ± +

P P P

P P

Can think of diagram that defines P2 as

L

P Q
P T=

2 1=P P T

Matrix T is singular, it maps all points onto the line L, and in particular maps P1 (already on L) onto
another point that is on L.

Then you can think of the solutions as multiplication of P1 by a transformation:

( )1 D= ±P P T I
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3D(2DH)
Cubic Curves
This is cannibalized from

How Many Different Cubic Curves Are There?
and

Cubic Curve Update
Which are chapters 4 and 6 of

Jim Blinn’s Corner: Dirty Pixels

Definition
3 2 2 3

2 2

2 2

3

3 3

3 6 3

3 3

0

Ax Bx y Cxy Dy

Ex w Fxyw Gy w

Hxw Jyw

Kw

+ + +

+ + +

+ +

+ =

It's possible to write the cubic equation as a sort of cubical matrix of coefficients. Sliced up and laid end to
end this would look something like

x y w

A B E

B C F

E F H

x

y

w

x

x y w

B C F

C D G

F G J

x

y

w

y

x y w

E F H

F G J

H J K

x

y

w

w

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

+

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

+

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

= 0

The Catalog
Given various values for the A's and B's and so forth, what is the zoology of shapes this can generate?

Also remember that any two curves that can be made to match by any homogeneous transformation
(possibly containing perspective) count as the same shape.

Degenerate Cubics
First of all, let's go through the various degenerate shapes. These are shapes formed when the cubic
equation can be factored. This can happen two ways.

First let's talk about the degenerate curves. Visually, these look like two or more low order curves drawn on
top of each other. Algebraically it means that the cubic expression can be factored into the product of two
or three lower order expressions.
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Doubly Degenerate

First, there are shapes formed if the cubic is factorable into 3 linear equations. I'll list the possible
combinations along with an example equation.

1. 3 coincident lines x3 0=

2.
2 coincident lines and

a third distinct one x y2 0=

3.
3 distinct lines that

intersect at the same
point

xy x y( )+ = 0

4.
3 distinct lines that

intersect at 3 distinct
points

( ) 0xy x y w+ − =

Each of these counts as one shape since it's possible to take any transformed version of the above and
transform it into the “standard form” shown. This is not completely trivial but you can figure it out.

Singly Degenerate

Second, there are the shapes formed from a linear term times a second order term. There are:

5.
A conic and

a line that is disjoint ( )( )2 2 2 2 0x y w x w+ − − =

6.
A conic and

a line that is tangent to
it;

( )( )x y w x w2 2 2 0+ − − =
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7.
A conic and

a line that intersects it
x y w x2 2 2 0+ − =d i

8.
A single point and
a line that is on the

point;
( )x y x2 2 0+ =

9.
A single point and

a line that is not on the
point;

( )( )x y x w2 2 0+ − =

10.
A null curve and

a line; ( )x y w x2 2 2 0+ + =

All these examples represent single shapes under perspective transformations. For example, any conic-and-
tangent (Type 6) can be transformed to the above standard position since we can transform the conic into a
unit circle (taking the tangent line with it) and then rotate the tangent line to be, say x =1. Type 8 is
similarly a single shape since we can transform the point to the origin and rotate the line to be vertical.
Type 9 is a single shape since we can transform the point to the origin, rotate the line vertical, and scale the
whole thing in x to put it at x =1. Type 10 is a single shape since the line can be transformed anywhere.
Types 5 and 7 are also single shapes, but it might take some perspective intuition to see it. To see why, let's
try to transform a circle and line into the same circle with the line at a different position. First, do some sort
of perspective transform on the circle, turning it into an ellipse. The line goes along for the ride and winds
up somewhere new. Now perform a non-uniform scaling and translation of the ellipse to turn it back into
the original circle. The line moves again, but now it's in a different position. To be explicit, the transform
might be

x y w x y w

5 0 3

0 4 0

3 0 5

L

N
MMM

O

Q
PPP

= ′ ′ ′

You can verify for yourself that if x y w2 2 2+ = then ′ + ′ = ′x y w2 2 2, so this transforms the circle to itself.
But the vertical line x w k= transforms into

x w
k

k
= +

+
5 3
3 5

Notice that the lines x w = −1 and x w =1 stay put; they are the tangents. Only the other vertical lines
move—pretty magical.
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NonDegenerate

Preview

Of course the interesting cubics are the non-degenerate ones. Before we get into these it will be useful to
preview some things that cubics can do that we haven't seen before with lower order curves.

The most important of these is the inflection point, indicated in most of the figures below with an x. This
occurs when the tangent to the curve has the curve lying on both sides of it.

The other interesting thing is the double point, a point of self-intersection, see figure 5b. We have already
sort of seen this in degenerate conics consisting of two intersecting lines.

Some General Formulae

Let’s review some algebraic formulas that work for any implicitly defined curve.

The line tangent to any curve given by f x y w( , , ) = 0 is the column vector formed by

f

f

f

x

y

z

L

N
MMM

O

Q
PPP

where the elements are the partial derivatives of the function f evaluated at the point on the curve where the
tangent is desired. If it happens that all three derivatives are zero at a point on the curve, then that point is a
double point.

Inflection points can be found by means of an auxiliary curve called the Hessian curve. The equation for
this curve is constructed by the determinant

det

f f f

f f f

f f f

xx xy xw

xy yy yw

xw yw ww

L

N
MMM

O

Q
PPP

= 0

where the elements of the matrix are the various second derivatives of the function f. If f is a cubic
function, the Hessian will generate another cubic curve. The usefulness of this curve comes from the fact
that it intersects the original curve at all double points and at all inflection points.

Thus we can find double points of f by seeing where all three of the first derivatives are zero, and we can
find all inflection points by intersecting the curve with its Hessian and throwing out all the already
identified double points. Of course in a real application this might turn into a lot of algebra; but we will find
these equations useful.

By the way, if f is a second order function, the Hessian works out to be a constant, the determinant of the
original matrix. If the determinant (Hessian) is zero it means that the second order curve is degenerate
(lines or a single point).

Standard Position 1
We can now attempt to find a standard position for a non-degenerate cubic curve that will let us see its
geometric properties best. I'm going to be pretty glib about saying what's possible without explicitly telling
you how to calculate the transformation. But that's the nature of existence proofs.

First, let's transform the curve so that it passes through the point 0 1 0 , the point at infinity on the y

axis. Plugging this into the general cubic equation it means that the coefficient D has to be zero.
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Now let's rotate it about that point so that the tangent coincides with the line at infinity, that is the line

0 0 1 T . Evaluating the first derivatives at this point we get

f

f

f

C

D

G

x

y

w

L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

3

so we must have C = 0 and G ≠ 0 .

We have to specify that the point we started with was not a double point, or G would be zero. This isn't
hard; there are lots of non-double points. But while we're at it, let's arrange it so the point we started with
was an inflection point. (All non-degenerate cubics have at least one inflection point.) Evaluating the
second derivatives at 0 1 0 and constructing the Hessian gives:

det

B F

G

F G J

G B

0

0 0 2
L

N
MMM

O

Q
PPP

= −

so B = 0 .

What we have said is that any non-degenerate cubic can be transformed so that the equation looks like

Ax

Ex w Fxyw Gy w

Hxw Jyw

Kw

3

2 2

2 2

3

3 6 3

3 3

0

+ + +

+ +

+ =

But we're not done yet. Let's now scale and skew the y coordinate via the transformation

y
F

G
x y

J

G
w− + −

2

Plug this in, turn the crank, and you will discover that the F and J terms disappear. The result is that all
non-degenerate cubics can be transformed into the form

y w ax bx w cxw dw2 3 2 2 3= + + +

or in non-homogeneous form (with X x w= and Y y w= )

Y aX bX cX d2 3 2= + + +

That is, the set of possible shapes is constructed by taking the square root of all possible cubic polynomials
in X. If the parameter a is zero it means we have a degenerate curve. We can see this by going back to the
homogeneous form and putting the y back on the right hand side.

( )
2 2 3 2

2 2 2

0 bx w cxw dw y w

w bx cxw dw y

= + + −

= + + −

In other words we have the line-at-infinity times a quadratic curve (which may itself be factorable.)
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Back to the case where 0a ≠ . The equation y w ax bx w cxw dw2 3 2 2 3= + + + isn't really a four-parameter
set of shapes. We can boil this down still further by translating in x to “center” the cubic polynomial (so
that its second derivative is zero at x = 0 ). This is similar to what we do in the conventional algorithm for
solving cubic polynomials; here it will make the b coefficient zero. We now have:

2 3 2 3y w ax cxw dw= + +

(The new a,c,d coefficients will be some function of the old a,b,c,d . I’ve just recycled the letters a,c,d
here.)

Next, we can scale in x to get 1a = and we have (again recycling the letters c and d):

2 3 2 3y w x cxw dw= + +

This looks, at first, like it might be a two-parameter family of curves, but it’s not. A further scale in x and y
can transform the curve as follows

( ) ( ) ( )23 2 3

3 23 2 3 2

0

0

x x y

x x y

s x c s x w dw s y w

s x cs xw dw s y w

= + + −

= + + −

If we pick scales that satisfy
3 2

x ys s= (note that xs must be positive) we can write:

3 33 2 3 2

3 3 2 3 2
2 3

0 x x x

x

x x

s x cs xw dw s y w

c d
s x xw w y w

s s

= + + −

    
= + + −         

This is back to our canonical form but with different values of c and d.

2

3

ˆ

ˆ

x

x

c
c

s

c
d

s

=

=

In other words, the two curves with parameters ( ),c d and ( )ˆˆ,c d are the same curve (modulo some

scaling transformation). All the cubic curves generated by ( ),c d values along any of the curved lines in

the following c,d parameter space graph are the “same shape”:
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-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
c

d

All the different cubic curves then form a single parameter family represented by this parameter-space
curve sweeping around the origin, with all cubic curves within each family satisfying:

3

2
constant

c

d
=

Note, however, that the two curves with parameter ( ),c d and ( ),c d− are different curves, so just using

the constant 3 2c d does not give an unambiguous parameterization of the space of cubic curves.

To get a sense of the possible shapes of cubic polynomials we can have I’ll generate a few of them and
place the plots on the (c,d) diagram. In addition to the ring of polynomial shapes, don’t forget the single

cubic curve shape represented by the origin ( ) ( ), 0,0c d = .

c

d
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The actual cubic curve itself is

3Y X cX d= + +
and is defined where the cubic in X is positive. These shapes appear in the plot below;

c

d

That is, we have a continuum of shapes plus one distinct shape at the origin of (c,d) space. Each of the
shapes shown above is distinct from the others. Despite the fact that several of them look very similar, they
cannot be transformed into each other by a homogeneous perspective transformation.

The shapes in the continuum can have either one or two disjoint pieces. The transition point happens when

the cubic polynomial 3 2 3x cxw dw+ + has a double root. This happens when the polynomial is

( ) ( )23 2 33 2 2x xw w x w x w− + = + −

and when the polynomial is

( ) ( )23 2 33 2 2x xw w x w x w− − = − +

These two situations generate the additional curves
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c

d

c

d

We will then tabulate this as three distinct curve types and two continuous families of topologically similar
types:

10. A cusp 3 20 x y w= −
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11. A loop 3 2 3 23 2 0x xw w y w− + − =

12. A wiggle and a dot 2 3 2 3y w x cxw dw= + +

13. A wiggle 2 3 2 3y w x cxw dw= + +

14 An egg and a wiggle 2 3 2 3y w x cxw dw= + +

Standard Position 2
I would like to thank William Waterhouse of Penn State for making me aware of some of the analysis here.
Waterhouse points out that there is a prettier formulation of the cubic equation devised by Hesse, viz.

x y w xyw3 3 3 0+ + − =λ

This form is nice and symmetric; each coordinate is treated the same as any other. It also has some nice
geometric properties. Notice, for example, that all the curves in this formulation pass through the three
points −1 0 1 , 0 1 1− and 1 1 0− . Furthermore, these three points happen to be the three
inflection points of the curve, and they are of course collinear.

This equation has two degenerate special cases. When λ = 3 it degenerates to a line and a dot (type 8 from
above); the line is X Y+ = −1 and dot is at 1 1 . I originally saw this by plugging in numbers and plotting
them; with some work you can also see it algebraically by factoring:

( )( )x y w xyw x y w x y w xy yw wx3 3 3 2 2 23+ + − = + + + + − − −

When λ = ∞ the curve degenerates into three distinct lines (type 4 from above). How do we to deal
algebraically with an infinite value for λ? Just divide the equation by λ and then let it go to infinity. The
equation you get is:

xyw = 0
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This gives the three lines: the X-axis, the Y-axis, and the line at infinity.

I actually played with this symmetric form a lot when writing the first version of this as article as an IEEE
column, trying to see if I could get all of the nondegenerate cubics to be expressible in this form.
Unfortunately, I started with the cusp (it's the simplest algebraically), and found that it cannot be
transformed into this symmetric form. I got discouraged and gave up. Well guess what… all of them can be
transformed into this form except for the cusp (type 11) and for types 15b and 15d. So I gave up too soon. I
guess there's a lesson here.

Correspondence

Anyway, what I want to do now is to show the correspondence between the Y 2 =... form and Hesse’s
symmetric form. To make the correlation, let's start with the symmetric form and try to transform it to the
Y 2 form. First for some visual inspiration. Look at a sampling of the sorts of shapes it can generate in the
right column of figure 1. They are all tilted by 45 degrees, so our first guess is to tilt the symmetric
equation back by 45 degrees. Actually it's simpler to use the following transform:

x x y

y x y

+
−

The symmetric equation turns into

y w x x x w w2 3 2 36 2 0( )λ λ+ + − + =

Now remember, we're trying to put this into the form Y 2 = (a cubic polynomial in X). So let's try to turn the
factor λw x+ 6b g into a simple w. With blinding inspiration we try replacing

w w x( )− 6 λ

Warning! Danger! What happens if λ = 0? If this happens, our intermediate form is

y x x w2 3 36 2 0( ) + + =

and we can bash it into the desired form by simply exchanging x and w. After fiddling we get the equation
for a particular type 14 curve with the c,d parameters equal to (0,-1):

Y X2 3 1= −

our first match between the old world and the new.

Whew! Back to λ ≠ 0. Make the w x− 6a f λ substitution, algebrize a bit, go to non-homogeneous
coordinates and you wind up with:

Y X X X2 3
3 3

3
2

3 3

3 3 3

8 3 4 3 18 1=
−F

H
GG

I
K
JJ +

− ⋅F
HG

I
KJ + + −λ

λ
λ

λ λ λ
d i

so
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a

b

c

d

= −

= − ⋅

=

= −

8 3

4 3

18

1

3 3 3

3 3 3

3

3

λ λ

λ λ

λ

λ

d i
d i

Now for a reality check. If λ = 3 the cubic term evaporates and we have a degenerate curve. Check. If
3 2ac b= we should get a type 14 curve. So substitute in and solve for λ. You get two solutions: λ = 0 and
λ = −6 . We already saw that λ = 0 leads to (c,d)=(0,-1). Double check. λ = −6 turns out to give (c,d) =
(0,+1). Triple check. Other values of λ give various cases of type 14 and 15.

Orphans

There are some curves left out in the cold though: the cusp (type 11), the loop (type 12), and the wiggle-
dot (type 13). These cannot be generated by just finding a magic value for λ. Their algebraic form just
won't be symmetric. So how close can we come?

After some tinkering I was able to transform the loop into the approximately symmetrical form

x y xyw3 3 0+ + =

Notice that there's no parameter here. The λ can be absorbed by scaling x and y. So all loops are the same
shape (projectively).

Is there a sort-of-symmetric formulation for the cusp and wiggle-dot? I've flailed around for a while but
haven't come up with one. (You can make the wiggle-dot a bit prettier by translating it so that it's
Y X X2 3 2= − )

Questions
Is there a way, given the original coefficients, to find which of these shapes it generates? For quadratic
curves we looked at the eigenvalues of the coefficient matrix to catalog the possible shapes. Is there a
generalization of eigenvalues the 3x3x3 tensor of cubic curve coefficients that would give us a similar
indicator? This would presumably take the form of a tensor diagram consisting of several copies of the
coefficient tensor.

Some of the curves plotted look suspiciously similar. What geometric property that is preserved under
homogeneous perspective transformations makes them different? This would be a cross ratio
generalization in a similar manner to the quadratic polynomial cross ratio generalization.

Given the original coefficients, what formulas calculate the following interesting geometric properties:
(These are properties that remain invariant under perspective transformation.)

1 Number and location of inflection points

2 Number and location of double points

3 Intersection properties of the three tangent lines at the three inflection points

Some initial ideas appear in the next chapter.
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3D(2DH)
The Hessian of a Cubic Curve

This chapter consists of various ideas on using the Hessian curve (defined below) to identify interesting
properties of a cubic curve.

Cubic Curve
Ax Bx y Cxy Dy

Ex w Fxyw Gy w

Hxw Jyw

Kw

3 2 2 3

2 2

2 2

3

3 3

3 6 3

3 3

0

+ + +

+ + +

+ +

+ =

Matrix Form is 3x3x3 tensor

[ ] 0

A B E B C F E F H x x

x y w B C F C D G F G J y y

E F H F G J H J K w w

           
            =           
                      

Diagram form

P = 0C

P

P

Derivatives
The function is

( ) 3 2 2 3

2 2

2 2

3

, , 3 3

3 6 3

3 3

f x y w Ax Bx y Cxy Dy

Ex w Fxyw Gy w

Hxw Jyw

Kw

= + + +

+ + +
+ +

+

First derivatives
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2 2

2

3 6 3

6 6

3

x

f
f Ax Bxy Cy

x
Exw Fyw

Hw

∂ = = + +
∂

+ +
+

= first slice =

1,0,0 C

P

P

2 2

2

3 6 3

6 6

3

y

f
f Bx Cxy Dy

y

Fxw Gyw

Jw

∂ = = + +
∂

+ +
+

= second slice =

0,1,0 C

P

P

2 2

2

3 6 3

6 6

3

w

f
f Ex Fxy Gy

w
Hxw Jyw

Kw

∂ = = + + +
∂

+ +
+

= third slice =

0,0,1 C

P

P

More generally, can say the derivative is a contravariant vector that is:

C

P

P

3
x

y

w

f

f

f

 
  = 
  

Second derivatives

6 6 6xxf Ax By Ew= + +

6 6 6xyf Bx Cy Fw= + +

26 6 6xwf Ex Fy Hw= + +

6 6 6

6 6 6
yy

yw

f Cx Dy Gw

f Fx Gy Jw

= + + +

= + + +
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6 6 6wwf Hx Jy Kw= + + +

etc.

Similarly can construct matrix of second derivatives as:

P C6
xx xy xw

xy yy yw

xw yw ww

f f f

f f f

f f f

 
  = 
  

Hessian

Hessian is a new cubic curve defined as

( ), , det 0
xx xy xw

xy yy yw

xw yw ww

f f f

x y w f f f

f f f

 
 = = 
  

H

This is interesting because where the curve intersects its Hessian, there is an inflection point.

Explicitly, the Hessian is

2

2

det

6 6 6 6 6 6 6 6 6

det 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6

xx xy xw

xy yy yw

xw yw ww

f f f

f f f

f f f

Ax By Ew Bx Cy Fw Ex Fy Hw

Bx Cy Fw Cx Dy Gw Fx Gy Jw

Ex Fy Hw Fx Gy Jw Hx Jy Kw

 
  = 
  
 + + + + + +
 + + + + + + = 
 + + + + + + + 

36 det

Ax By Ew Bx Cy Fw Ex Fy Hw

Bx Cy Fw Cx Dy Gw Fx Gy Jw

Ex Fy Hw Fx Gy Jw Hx Jy Kw

+ + + + + + 
 + + + + + + = 
 + + + + + + 

36 det

A B E B C F E F H

x B C F y C D G w F G J

E F H F G J H J K

      
      + + =      
            

{ }36 det x y wx y w+ + =C C C

The ways to evaluate this are best done in diagram form:

The diagram is
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= 0P C PC

P

C

Can now see that transforming C by the transformation T will transform the Hessian by the same
transformation: (show diagram).

So the 10 different terms are various determinant/mutual determinants of the three “slices” of the C tensor,
expressed by plugging in x,y,w in various permutations for 1,2,3 below:

C1 C3C2

Another view of the Hessian diagram

= 0
P

C
P

C

C

P

Can epsilon/delta simplify this? For the red arc below, we expect not to get anything useful by combining
with the gray arcs.
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P
C

P
C

C

P

There are (modulo symmetry) two other choices, one attached to P and one attached to C

Choice 1

+

P
C

P
C

C

P

P
C

P
C

C

P

P
C

P
C

C

P

=
+

=
+

The second term is zero, since each arm is zero, since it’s an anti-symmetric thing contracted with a
symmetric thing.
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flip

flip

C C C
= = -

Choice 2

P
C

P
C

C

P

Havent tried this one yet

Hessian of Standard Curve
Give standard curve

2 3 2 33 3y w x Hxw Jw= + +

Derivatives:

2 2

2 2

3 3

6

6 3 3

x

y

w

f x Hw

f yw

f Hxw Kw y

 + 
   = −  
   + −   

6 0 6 0

0 6 6 6 0

6 6 6 6

xx xy xw

xy yy yw

xw yw ww

f f f x Hw x Hw

f f f w y w y

f f f Hw y Hx Kw Hw y Hx Kw

     
     = − − = − −     
     − + − +    

Hessian curve found by setting determinant of this to 0
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( ) ( )3 2 2

2 2 3 2 2

0

det 0

x Hw

w y xw Hx Kw w H y x

Hw y Hx Kw

Hx w Kxw w H y x

 
 − − = − + − − − 
 − + 

= − − + −

Can show that the curve and its Hessian curve transform via the same matrix

Inflection Points
Inflection points happen at intersections of the original curve with its Hessian curve. So we require both

3 2 3 2

2 2 3 2 2

0 3 3

0

x Hxw Kw y w

Hx w Kxw w H y x

= + + −
= − − + −

One point that satisfies this is [x y w]=[0 1 0].

Solve both for y

3 2 3
2

2 2 3 2
2

3
3

x Hxw Kw
y

w
Hx w Kxw w H

y
x

+ +=

− − +=

equate

3 2 3 2 2 3 2

4 2 2 3 2 2 3 4 2

3
3

3 3 3 3

x Hxw Kw Hx w Kxw w H
w x

x Hx w Kxw Hx w Kxw w H

+ + − − +=

+ + = − − +
4 2 2 2 2 3 3 4 23 3 3 3 0x Hx w Hx w Kxw Kxw w H+ + + + − =

4 2 2 3 2 46 4 3 0x Hx w Kxw H w+ + − =

( )
4 2 2

3 2

6 4 3 0

6 4 3 0

X HX KX H

X HX K X H

+ + − =

+ + − =

Solve this to find X of inflection points

Special cases

H=0

( )
4

3

3

4

4 0

0, 4

X KX

X X K

X K

+ =

+ =

= −

(H,K) = (0,1/4) X=0,-1

(H,K) = (0,-1/4) X=0,+1
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K=0

( )

4 2 2

2 2
2

6 3 0

6 36 4*( 3)

2

6 48
2

3 2 3

X HX H

H H H
X

H

H

+ − =

− ± − −=

− ±=

= − ±

Transforming Hessian to Standard Position
To identify the shape of the Hessian curve do the transformation x<->w. This is a perspective rotation
along x axis (y stays same). Equation is

2 2 3 2 2

3 2 2 2 2

0 Hw x Kwx x H y w

x H Kx w Hxw y w

= − − + −
= + − − −

Translate x by delta

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

3 22 2 2

23 2 2 2 3 3 2 2 2 2 2 2

3 2 2 2 2 2 2 3 3 2

2 2 3 2 2 3 2

3 2 2 2 2 2 2 3 3 2

2 2 3 2 2

0

3 3 2

3 3

2

3 3

2

x w H K x w w H x w w y w

x x w xw w H K x xw w w H x w w y w

x H x w H xw H w H

x wK xw K w K xw H Hw y w

x H x w H xw H w H

x wK xw K w K xw H Hw

δ δ δ

δ δ δ δ δ δ

δ δ δ
δ δ δ

δ δ δ
δ δ δ

= + − − − − − −

= + − + − − − + − − −

= + − + −

− − + − − −

= − + −
− + − − +

( ) ( ) ( ) ( )
3 2

2 3 2 2 2 2 2 3 2 2 3

2

3 3 2

y w

H x H K x w H K H xw H K H w

y w

δ δ δ δ δ δ
−

= + − − + + − + − − +

−

pick

23
K

H
δ = −

( ) ( )
2

2 3 2 2 2
2 2

3 2
2 3

2 2 2

2

0 3 2
3 3

3 3 3

K K
H x x w H K H xw

H H

K K K
H K H w

H H H

y w

    = + + − + − −         
      + − − − − + −             

−
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( )
2

2 3 2 2
4 2

3 2
2 3

2 2 23 3 2 2

2

3 2
3*3 3

33 3

K K
H x H K H xw

H H

K K K
H K H w

HH H

y w

 
= + − − 

 
      + − − − + −     

     
−

( )
2 2 2

2 3 2
2 2 2

3 2 2
3

3 6 2 4 2

2

2 3
3 3 3

3 3 3

K K H H
H x xw

H H H

K H K K KH
w

H H H

y w

 
= + − − 

 
 

+ − − 
 

−

( )
2 3 3 2 3

2 3 2 3 2
2 3 4

3 2 3
3 3

K H K KH
H x xw w y w

H H

   − − − −= + + −   
   

now scale x by H^(-2/3)

( )( ) ( )
2 3 3 2 3

32 2 / 3 2 / 3 2 3 2
2 3 4

3 2 3
3 3

K H K KH
H H x H x w w y w

H H
− −   − − − −= + + −   

   

2 3 3 2 3
3 2 / 3 2 3 2

2 3 4

3 2 3
3 3

K H K KH
x H xw w y w

H H
−   − − − −= + + −   

   

This gives the (H,K) coordinate position in “shape space” for the Hessian in terms of the (H,K) position of

the original cubic

Linear combo of curve with its Hessian
genl linear combo will be

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 2 3 2 2 2 3 2 2

3 2 3 2 2 2 3 2 2

3 2 2 3 2 2 2

3 3

3 3

3 3

x Hxw Kw y w Hx w Kxw w H y x

x Hxw Kw y w Hx w Kxw w H y x

x H K xw K H w y w H x w y x

α β

α α α α β β β β
α α β α β α β β

+ + − + − − + − =

+ + − − − + − =

+ − + + − − − =

Two interesting choices for alpha,beta
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3 2 2 3 2 2 2

3 2 2 3 3 2 2 2 2

3 2 3 2 3 3 2 2 2

3

3 3

0 3 3 3 3

3 3 3 3

K

H

x H K xw K H w y w H x w y x

K x xw K H w K y w H x w H y x

K x K w K y w H w H x w H y x

α
β

α α β α β α β β

=
=

+ − + + − − − =

+ + + − − − =

+ − + − − =

If we are one of the paraetrizable curves (loop, cusp, serpentine) we have

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

2 3

3 3 2 2 2 2

3 2 2 2 2

2 2 2 2 2

3 0

0 3 3 3

3 3 3

3 3 3

K H

K x w K y w H x w H y x

K x K y w H x w H y x

K x H y x K y H x w

+ =

+ − − − =

− − − =

− − + =

Other choice

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

3 2 2 3 2 2 2

2 3 2 2 3 2 2 2 2

2 3 3 2 2 2 2 2 2

3 3

3 0 3

3 3

H

K

x H K xw K H w y w H x w y x

H x H H KK xw w H y w KH x w K y x

H x H K xw H y w KH x w K y x

α
β
α α β α β α β β

=
= −

+ − + + − − − =

+ + + − − − − − =

+ + − + + =

What is the Hessian of the Hessian?

Example

Loop

( )
( )

2 2

3 2 2

1

, ,

Y X X

f x y w x x w y w

= +

= + −

inflection point at (0,1,0)

First derivatives:
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2

2 2

3 2

2
x

y

w

f x xw

f yw

f x y

= +
= −

= −

Second derivatives:

6 2 0 2

0 2 2

2 2 0

xx xy xw

xy yy yw

xw yw ww

f f f x w x

f f f w y

f f f x y

  + 
   = − −   
  −   

Determinant of this is:

( )

( )

2 2

2 2 2

6 2 0 2

det 0 2 2 8 4 6 2

2 2 0

8 3

x w x

w y x w y x w

x y

x w y x y w

+ 
 − − = − + 

−  

= − −

( )

2 2 2

2 2

2
2

3 0

3 1 0

3 1

X Y X Y

X Y X

X
Y

X

− − =

− + =

=
+

Aside

A linear combination of these gives a curve that also passes through the inflection

( ) ( )3 2 2 2 2 23f g x x w y w x w y x y wα β α β+ = + − + − −

If alpha = - beta we cancel a lot and get:

( ) ( )

( )

3 2 2 2 2 2

3 2

2 2

3

3

3

f g x x w y w x w y x y w

x y x

x x y

− = + − − − −

= +

= +

The degenerate cubic consisting of the y-axis and the point at the origin.

Now the Hessian of this

( ) 2 2 2, , 3g x y w x w y x y w= − −

First derivatives

2

2 2

2 3

6 2
x

y

w

g xw y

g xy yw

g x y

 − 
   = − −  
 −    

Second derivatives
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2 6 2

6 6 2 2

2 2 0

xx xy xw

xy yy yw

xw yw ww

g g g w y x

g g g y x w y

g g g x y

  − 
   = − − − −   
  −   

determinant is

( ) ( ) ( ) ( ) ( )
( )

2 2

2 3 2 2

2 6 2

det 6 6 2 2

2 2 0

2 6 2 2 4 6 2 4 2

8 6 3

w y x

y x w y

x y

y y x x x w y w

xy x x w y w

− 
 − − − − = 

−  
= − − − − − −

= + + −

2 3 2 2

3 2
2

6 3 0

3
6 1

XY X X Y

X X
Y

X

+ + − =
− −=

−

Diagram

C C

C

C C

C

C C

C
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C C

C

C C

C

C C

C

Yikes.

I Don’t know if this simplifies at all. The Hessian is a invariant function of the original curve. If the H of
the H is a yet totally different curve, we could have an infinte family of these implied by any original curve
C.
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3D(2DH)
Cubic Curve Invariants

Here are some rough ideas for useful invariants for cubic curves.

Review: We formulate various invariants for 2DH by constructing a network connecting multiple copies of
a tensor with epsilons. Any such diagram will be invariant due to the identity

T

TT

=

Det T

Thus, plugging in a transformed C we can shove all the T’s over to the epsilons and they will turn into
factors of detT. If we have an even number of epsilons, the sign won’t change regardless of the sign of
detT.

One such invariant gave the condition that a quadratic curve is factorable

Q

Q

Q

= 0

This is just the determinant of Q (times some scale factor).

Cubic Curve invariants
What sorts of diagrams represent invariants for cubic curves? They will consist of some number of C
nodes connected together with an equal number of epsilon nodes. I have experimented with the following
two diagrams. Anything simpler (with fewer C’s) appears to be identically zero.

Cube Invariant
The first arranges the C and epsilons topologically on the vertices of a cube.
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C

C

C

C

Hexagon invariant
The second is similar but is more like a hexagonal prism

C C

C
C C

C

Octahedron invariant
The obvious extension to an octahedron doesn’t buy us anything. I have convinced myself that it just gives
a value that equals the square of the cube invariant. (But I don’t have a solid proof).

Meaning
Both these diagrams represent quantities that are invariant (at least sign invariant) under coordinate
transformations of C. So what geometric condition causes each of them to be zero?

I’m still working on this. But I have some info. Consider the standard position cubic

2 3 2 3y w x cxw dw= + +

I have plugged this special case cubic into a special purpose symbolic evaluator for the above two diagrams
and have found the following interesting result:

Value of Cube Invariant = c

Value of Hexagon Invariant = d

This means we are on the road to a calculation that, given an arbitrarily positioned cubic C, can calculate
the coordinates of the cubic in the parameter space (c,d). This is the “shape space” described in a previous
chapter.
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I do not think that the above answer is complete, however, since it does not take the form of a
homogeneous scale-invariant cross ratio, like we discussed in an earlier chapter. We need perhaps to have
some other factor multiplied by the cube invariant and take the ratio with the hexagon invariant to get a
cross-ratio style quantity. The quantity we evaluate should be independent of homogeneous scales of C as
well as independent of transformations of C.

The Ultimate Goal
I mentioned in the introduction that the G. Solomon described the discriminant function as being degree 12
in the coefficients of the cubic. This implies a diagram with 12 C nodes and 12 epsilon nodes. Often
complex diagrams like this are factorable into smaller pieces. This was the case with the representation of
the resultant of two quadratic polynomials and got things like:

= −

R Q

RQ

2

R Q

RQ

2

Q R

RQ

Likewise, I mentioned above that an octahedral ring of C’s seems to factor into two cube invariant
diagrams. If Solomon’s discriminant can be represented in a diagram (I think it can), it is very possible that
it is factorable, or at least expressible as a sum of factored pieces. More work is needed.
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Summary

Benefits of Tensor Diagrams
Tensor diagrams can represent complex polynomial expressions in a way that we can see their internal
structure. We can operate on small parts of this expression (as with applications of epsilon/delta) without
getting overburdened with the whole rest of the diagram. Conventional notation does not give us this
ability.

Limitations of Tensor Diagrams
I promised a discussion of the limitations of tensor diagrams. Here are some thoughts.

The main limitation seems to be the combinatorial explosion of terms in some applications. When tensor
diagrams are applied to high degree polynomials the nodes have more and more arcs radiating from them.
When they are applied to higher dimensionality objects the epsilon node has more and more arcs. Going
much past 4 in either axis gets rather messy.

Some of the derivations shown here seem a bit brute force. This may be a problem for generalizations, but
I think that a lot of this is just scaffolding. When we all understand diagram manipulation better many of
these problems can be solved directly with diagrams without also having to check our work with
conventional notation.


